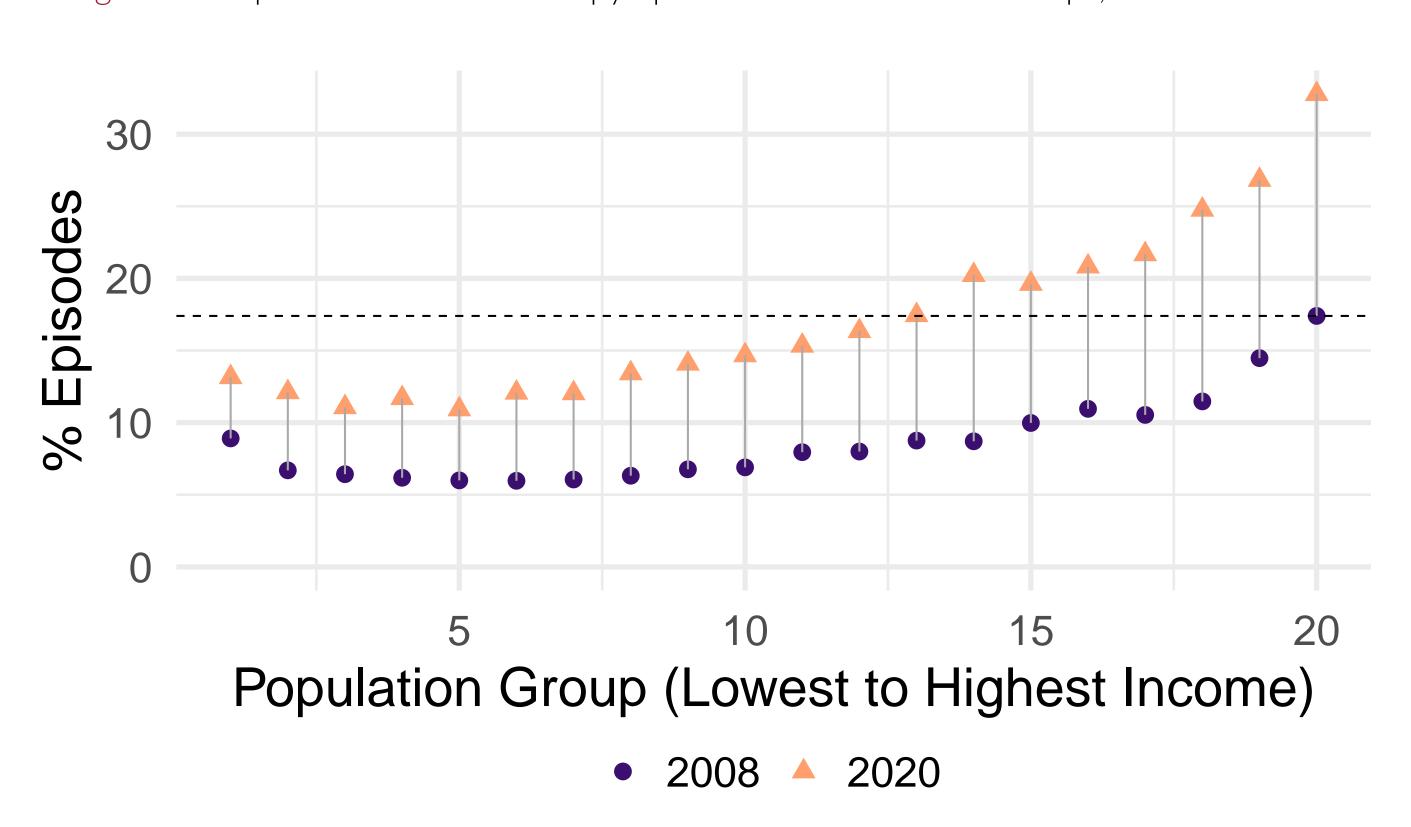
The Value of (Sub) Specialization: Evidence from Oncology

René Karadakic ¹ David C. Chan ²

Nancy L. Keating ³


Bruce E. Landon ³ Michael L. Barnett ⁴

¹Harvard T.H. Chan School of Public Health

²UC Berkeley ³Harvard Medical School ⁴Brown School of Public Health

Background and Motivation

Figure 1. Proportion of Chemotherapy Episodes Across Income Groups, 2008 and 2020

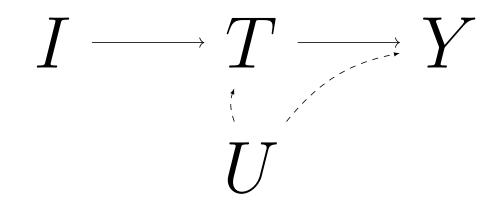
- Subspecialists \geq 80% of chemotherapy in one cancer group [Karadakic et al., 2025]
- Oncologic care is increasingly complex \Rightarrow incentivizing specialization [Lozinski, 2024]
- Subspecialization has expanded rapidly (9% in 2008 to 17.5% of episodes in 2020)
- Higher-income areas gained access faster than lower-income areas

Research Question and Result Summary

What are the effects of access to highly specialized medical oncologists?

- For health outcomes of patients receiving chemotherapy
- Reduces 3-year mortality by 10% relative to the mean
- No short term mortality effects
- For health care spending per chemotherapy episode
- Lower Part B chemotherapy drug related spending
- No difference in total episode spending
- For health care utilization of patients
- Cancer specific trial enrollment increases by 111%
- Newer chemotherapy agents (based on FDA approval year)
- No evidence of larger care teams and care fragmentation

Data and Sample


- 100% Medicare Part B and D claims
- Oncology Care Model: 6-month non-overlapping chemotherapy episodes [Keating et al., 2021]
- Includes physician-administered IV and oral systemic therapy
- Episodes assigned primary cancer type and principal oncologist (by plurality of office visits)
- Focus on first episodes and 5 most common cancer groups: breast, GI, hematologic, prostate/GU, thoracic
- Patients: aged ≥67, enrolled in Parts A and B
- Exclude patients with large distance to nearest oncologist

Empirical Strategy - Two Stage Least Squares

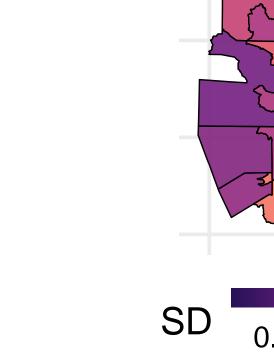
- Treatment: Binary indicator for office visit with subspecialist of relevant cancer type (e.g. breast cancer subspecialist for breast cancer patient)
- Instrument: Differential distance of patient to nearest relevant subspecialist and general oncologist (transformed for statistical modeling)

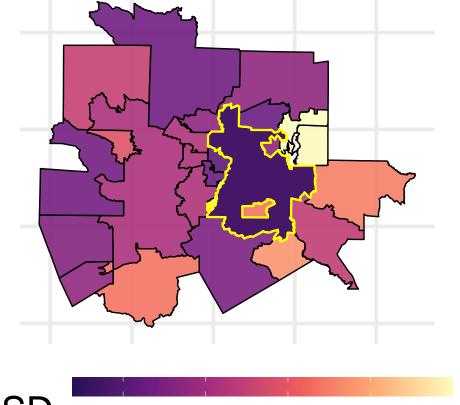
 $\mathbf{DD}_{cit} = \ln{(x + \sqrt{x^2 + 1})}$ where $x = \text{Dist. Subspecialist}_{ct} - \text{Dist. Generalist}_{t}$

Figure 2. Directed Acyclic Graph (DAG) illustrating Instrumental Variable Design

First Stage Estimation (Subspecialist Access and Differential Distance):

$$Access_i = \alpha + \beta DD_{t(i)z(i)} + \delta X_i + \tau_{t(i)} + \gamma_{z(i)} + \psi Z_{t(i)z(i)} + \varepsilon_i$$
 (1)


Second Stage Estimation (Outcome and Access instrumented via Differential Distance):

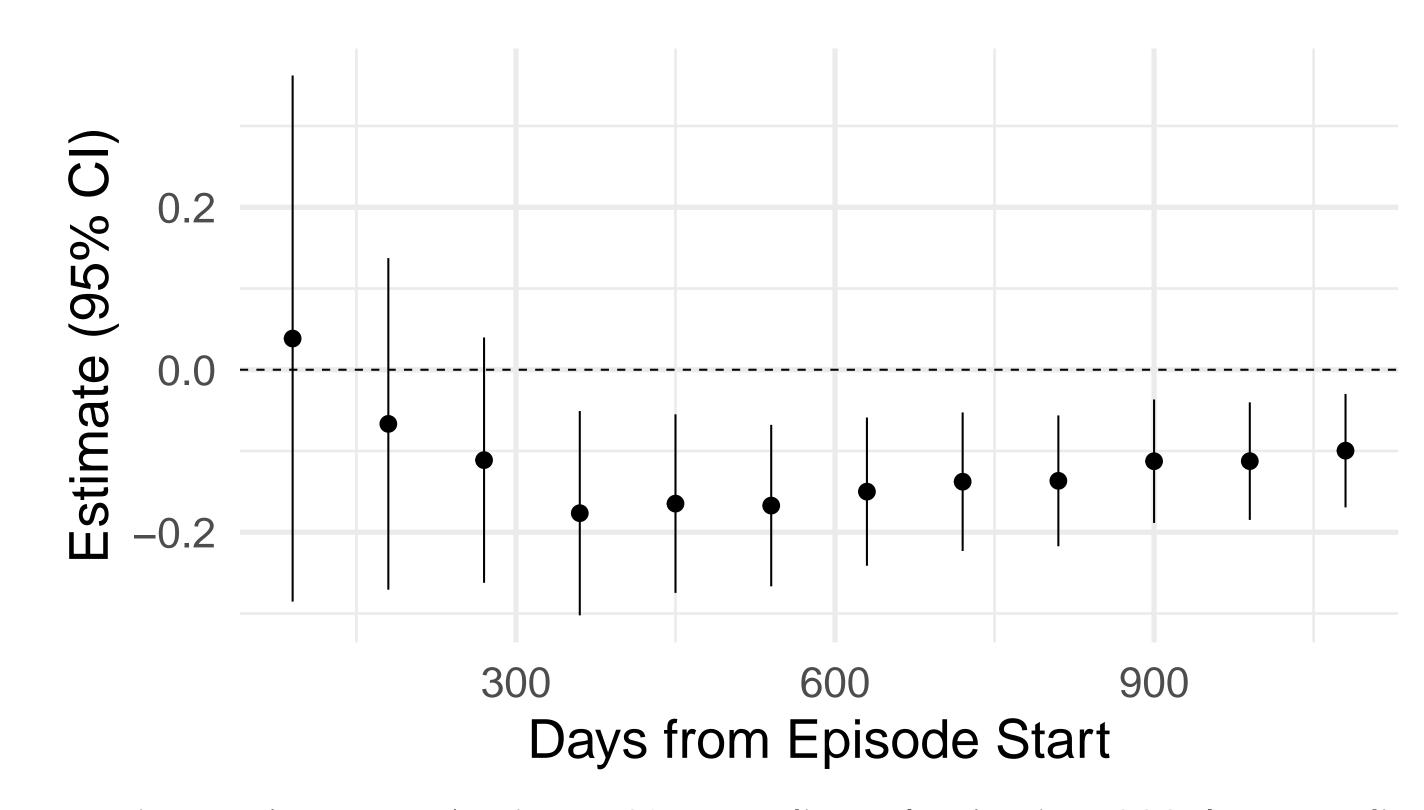

$$Y_i = \alpha + \beta \widehat{\mathsf{Access}}_i + \delta X_i + \tau_{t(i)} + \gamma_{z(i)} + \psi \mathsf{Z}_{t(i)z(i)} + \varepsilon_i \tag{2}$$

- Fixed effects: $\tau_{t(i)}$ = cancer types \times year, $\gamma_{z(i)}$ = ZCTA
- Controls: $Z_{t(i)z(i)}$ = time-varying ZCTA characteristics, X_i = demographics and comorbidities

First Stage Relationship and Variation

Residualized First Stage

Temporal Variation (Dallas, TX)


- First stage strong negative relationship between access to subspecialists and differential distance (F-Statistic for Equation 1 equals 1,823)
- Variation in access to subspecialists results from changes in differential distance within the same ZCTA (see e.g. Dallas TX)
- Conditional on controls and fixed effect differential distance is uncorrelated with observable patient characteristics

Key Takeaway

⇒ **Identifying variation** within ZCTA changes in access resulting from changes in differential distance over time (e.g. provider exit, entry or subspecialization)

Main Result: Mortality Effect of Subspecialist Access

Figure 3. 2SLS Estimates of Subspecialist Access on Mortality (Effect Scaled to Mean Mortality)

⇒ Subspecialist access leads to 10% mortality reduction in 1,080 day mortality

Result: Clinical Trial Enrollment and Subspecialist Access

Link Medicare claims to ClinicalTrials.gov and classify trials into cancer categories using GPT-4

	Cancer Trials				
	Any	Concordant	Discordant	Unspecified	Non-Cancer
Office Visit Subs.	0.023*** (0.007)	0.020**	0.003 (0.002)	-0.001 (0.002)	0.001 (0.001)
Adj R ² Observations Mean Dep. Var.	0.025 1,122,816 0.021	0.022 1,122,816 0.018	0.006 1,122,816 0.003	0.001 1,122,816 0.001	0.000 1,122,816 0.001

Notes: Sample includes all first chemotherapy episodes between 2014 and 2020. All models include demographic, ZCTA level and chronic conditions controls as well fixed effects for the beneficiaries' ZCTA and cancer type by year. Standard errors are clustered at the ZCTA level. Signif. Codes: ***: 0.01, **: 0.05, *: 0.1.

⇒ Subspecialist access leads to 110% increase in cancer trial enrollment, driven entirely by trials concordant to patients cancer type

Takeaway and Policy Implications

- Subspecialists improve survival and trial access without raising episode spending
- How can benefits of specialized oncologic care be made available despite geographic concentration?

References

René Karadakic, Christopher Manz, Arno Cai, David C Chan, Bruce E Landon, Jukka-Pekka Onnela, Nancy L Keating, and Michael L Barnett Geographic variation in the utilization of cancer care from subspecialized medical oncologists in the united states, 2008 to 2020. Annals of internal medicine. 2025.

Nancy L Keating, Shalini Jhatakia, Gabriel A Brooks, Amanda S Tripp, Inna Cintina, Mary Beth Landrum, Qing Zheng, Thomas J Christian, Roberta Glass, Colleen M Kummet, et al. Association of participation in the oncology care model with medicare payments, utilization, care delivery, and quality outcomes. Jama, 326(18):1829-1839, 2021.

Maya Lozinski. Knowledge growth and specialization: Evidence from oncologists. https://dx.doi.org/10.2139/ssrn.4960603, September 2024.

Final sample: 2.2M episodes, \approx 17,300 oncologists (2008-2020)