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Abstract

Specialization enhances professional productivity, but its benefits depend on ac-
cess to the relevant expertise. In oncology, subspecialization—the narrowing of clin-
ical focus within cancer care—has become increasingly common, yet its effects on
patient outcomes remain poorly understood. This paper estimates the causal impact
of access to subspecialized oncologists on treatment and survival using a differen-
tial distance instrument based on Medicare beneficiaries’ proximity to subspecialists.
Analyzing 6.1 million six-month chemotherapy episodes, we find that access to a rel-
evant subspecialist reduces three-year mortality by 8.6% and episode spending by
3.5%. Potential mechanisms of reduced mortality are greater enrollment in disease-
specific clinical trials and increased use of newer therapies. We find no evidence of
increased care fragmentation and only modest indications of more intensive treat-
ment near the end of life. Importantly, there are no mortality differences following
initial oncology consultations, suggesting that survival benefits arise from differences
in chemotherapy delivery rather than selective treatment of healthier patients. Our
findings highlight the value of deep clinical expertise and raise important concerns
about geographic disparities in access to subspecialized care.
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1 Introduction

Specialization is a fundamental determinant of the division of labor and the returns to
skilled work, shaping how tasks are allocated and influencing productivity and economic
outcomes (Smith, 1819). By allowing workers to develop expertise in narrowly defined
areas, specialization often enhances efficiency and drives gains in output. However, it can
also impose costs, including barriers to access, coordination inefficiencies, and a narrower
focus that may neglect broader system-level objectives. These trade-offs raise the question
of whether greater access to specialized services improves individual outcomes or if
inefficiencies and coordination frictions reduce its benefits.

Despite the importance of specialization in modern economies, its implications within
professions remain poorly understood. This paper examines specialization in medicine,
focusing on medical oncology, to evaluate how high degrees of specialization affect pa-
tient outcomes. Medicine has a long history of specialization, with distinct medical
specialties emerging as early as the 19th century (Weisz, 2006). Over time, physicians
organized into specialties based on procedural similarities, diagnostic approaches, and
disease patterns. More recently, "subspecialization" has emerged, further dividing spe-
cialists into narrower fields based on specific disease types. Medical oncology exemplifies
this trend, with "subspecialists" focusing on cancers that affect the same anatomical re-
gion (e.g. breast cancer or prostate cancer) or share similar treatment approaches (e.g.,
leukemia and lymphoma). In 2008, 9% of chemotherapy episodes among Medicare fee-
for-service patients were managed by subspecialized oncologists; by 2020, this share had
doubled to 18% (Karadakic et al., 2025), reflecting the rapid expansion of novel treatments
and cancer-specific clinical guidelines (Lozinski, 2024).1

Subspecialization can enhance precision of care when providers have the knowledge
to tailor treatments to the biological and clinical nuances of specific and even rare, can-
cers or the specific needs of patients. However, it also presents challenges: achieving
economies of scale in specialized care requires large patient volumes, leading to the un-
even geographic distribution of subspecialists, with rural and underserved areas often
facing limited access (Dingel et al., 2023; Karadakic et al., 2025). Additionally, many
cancer patients have multiple chronic conditions and even multiple cancers, making care
coordination increasingly complex. These dynamics make medical oncology an ideal
setting for studying the trade-offs of specialization on patient outcomes, health care uti-
lization, spending, and access disparities.

In this paper, we exploit exogenous variation in Medicare fee-for-service patients’ dif-
1See Appendix Figure D1 for an overview in the rise of subspecialization within medical oncology in

traditional Medicare between 2008 and 2020.
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ferential distance to subspecialized oncologists for their specific cancer type versus gen-
eral oncologists to estimate the causal effect of subspecialized oncologic care on patient
outcomes. The growing trend of oncologic subspecialization, combined with geographic
shifts in oncologists’ practice locations over time, creates quasi-exogenous variation in
access to subspecialists. Using a sample of 6.1 million six-month chemotherapy episodes
(i.e., episodes initiated by oral or physician-administered systemic anticancer therapy)
among 2.2 million patients, we compare individuals within the same ZIP Code Tabu-
lation Area (ZCTA), diagnosed with the same cancer type, whose relative proximity to
the relevant subspecialized oncologist versus a general oncologist changes over time.
We show that differential distance strongly predicts whether a patient has access to or
receives chemotherapy management from a subspecialized oncologist of the relevant can-
cer type. Under the plausible assumption that patients within the same ZCTA and with
the same cancer type differ in subspecialist access only due to changes in differential
distance over time, our instrumental variable strategy provides causal estimates of the
effects of subspecialist access on health care utilization and patient health outcomes.

Our analysis finds that patients with greater access to subspecialists experience lower
mortality in the years following treatment onset and are more likely to enroll in disease-
specific clinical trials. Our instrumental variable estimates indicate that access to a sub-
specialized oncologist for the relevant cancer type reduces three-year mortality by 1.4
percentage points, an 8.6% reduction relative to the mean. However, we find no sig-
nificant short-term mortality benefits within the first year, an expected result given that
the benefits of differential treatment would take months to accumulate. In contrast, or-
dinary least squares (OLS) estimates suggest that access to subspecialists is associated
with higher mortality, consistent with subspecialists treating more severe and potentially
more advanced cancers.

Beyond improved survival, we also examine how access to subspecialized oncologists
influences health care spending during six-month chemotherapy episodes. Using de-
tailed Medicare claims, we construct comprehensive episode-level spending measures.
Our two-stage least squares estimates indicate that subspecialist access reduces total
spending, driven primarily by a $1,300 decline in Medicare Part B expenditures—largely
from lower spending on injectable and infused chemotherapy agents and services related
to injection and infusion.

To validate our instrumental variable, we conduct a series of robustness and falsifica-
tion tests. First, we show that, conditional on ZCTA-level characteristics, beneficiary de-
mographics, and fixed effects, the instrument is uncorrelated with more than three dozen
patient health and demographic characteristics that influence clinical outcomes. Second,

3



we perform falsification exercises by randomly reassigning differential distances within
years and find no significant effect on 1-year mortality. We further reassign differential
distances to subspecialists of unrelated cancer types and again observe no systematic ef-
fects on mortality, supporting the exclusion restriction. Finally, our instrumental variable
estimates on clinical trial enrollment reinforce the specialization mechanism: access to
a subspecialized oncologist significantly increases enrollment in cancer trials specific to
the patient’s diagnosis, but has no effect on enrollment in non-cancer-related or generic
multi-cancer trials. This suggests that the effects are primarily driven by specialized
oncologic expertise rather than non-specific differences in physician quality or patient
selection. Additionally, we demonstrate that our instrumental variable estimates do not
impact health outcomes unrelated to oncologic care, reinforcing the interpretation that
physician specialization, rather than general clinical skill or patient selection, is the key
mechanism behind mortality reductions. For instance, access to a subspecialized oncolo-
gist has no effect on diagnoses of acute myocardial infarction, hip fractures, or strokes in
the two years following chemotherapy initiation. Taken together, these results bolster our
findings that oncologists’ cancer-specific expertise is the primary driver of the observed
mortality reductions.

To assess whether subspecialists systematically select healthier patients into
chemotherapy, we examine a separate sample of new office visits with oncologists. Ap-
plying our identification strategy to this new sample, we find that initial consultations
with subspecialized oncologists of the relevant cancer type increase the likelihood of
initiating chemotherapy within 180 days. Importantly, we detect no impact of initial
visits with subspecialists on the mortality of patients. These findings suggest that
the observed survival gains are not driven by selection into treatment, but rather by
differences in treatment of patients after the decision to initiate systemic therapy.

We explore several mechanisms that may explain the observed reductions in mortal-
ity and spending. First, we examine whether subspecialists facilitate greater access to
cutting-edge treatments by linking Medicare claims to clinical trial data from ClinicalTri-
als.gov, using GPT-4 to classify trials by cancer type. We find that access to a subspecial-
ized oncologist of the relevant cancer type significantly increases clinical trial enrollment,
particularly in diagnosis-specific studies—suggesting improved access to novel therapies
as a potential driver of better outcomes.

Second, we assess whether subspecialists are more likely to prescribe newer cancer
therapies by analyzing the average FDA approval year of chemotherapy agents. Access
to subspecialists is associated with a reduction in the average age of drugs by roughly
half a year, primarily driven by the use of newer Part B drugs. Third, we assess end-of-

4



life treatment intensity and find that access to subspecialists reduces hospice use in the
final 30 to 3 days of life by 29%, suggesting a shift toward slightly more aggressive care
near death. This is accompanied by a 77.6% reduction in hospice spending relative to the
mean, further indicating lower reliance on hospice services among patients with access
to subspecialists. Finally, we examine whether subspecialist-led care alters the frequency
of visits with providers during chemotherapy. Using episode-level claims data, we find
no effect on the number of visits or the diversity of provider specialties, but observe a
modest reduction in the number of unique providers. This suggests that concerns about
increased care fragmentation with subspecialization are not borne out in oncology.

We further investigate the magnitude of specialization - the most subspecialized
physicians should provide greater disease-specific benefit than less subspecialized
physicians, even among the most specialized professionals. In our primary analy-
sis, we focused on specialization in five groups of cancers: breast, gastrointestinal,
leukemia/lymphoma, prostate/genitourinary, and thoracic. To examine whether the de-
gree of specialization of the care-coordinating oncologist influences mortality outcomes,
we used detailed cancer type classification beyond the five groups used in the main
analyses to construct Herfindahl-Hirschman Indices (HHI) of oncologists’ specialization,
where a higher HHI indicates a greater concentration of a physician’s caseload in
a narrower set of cancer types. Instrumental variable estimates show that higher
oncologist specialization significantly reduces mortality, with a 0.1-point increase in
HHI (equivalent to moving from the 50th to the 64th percentile of the HHI distribution)
lowering three-year mortality by one percentage point (a 2.6 percent reduction relative to
the mean). These findings support the hypothesis that subspecialization could improve
patient outcomes by facilitating access to advanced treatments and highly-specific
physician expertise in a small number of cancers.

To understand how our estimated effects apply to different patient groups, we con-
duct a complier subgroup analysis, comparing compliers—those whose oncologist choice
is influenced by differential distance—to the broader Medicare fee-for-service chemother-
apy population. Compliers tend to be older, less likely to be female, and slightly more
likely to be black. They also appear healthier on average, with fewer chronic condition
flags for most chronic conditions. These differences help contextualize the impact of
subspecialist access.

Our findings contribute to several strands of literature. First, we add to the broader
economic literature on specialization and the division of labor (Smith, 1819; Becker and
Murphy, 1992). Economic theory predicts that greater specialization enhances efficiency
and expertise, yet also introduces potential trade-offs related to coordination costs and
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accessibility (Rosen, 1983; Baumgardner, 1988). We examine these effects in a high-skilled
professional setting—medicine, and specifically medical oncology—where specialization
has expanded (Karadakic et al., 2025) at a time of rapid growth of medical knowledge
and treatment options (Lozinski, 2024). Furthermore, our paper directly connects to Din-
gel et al. (2023) by providing empirical evidence on the benefits and constraints of higher
specialization in health care markets. While their work highlights how larger markets
facilitate specialization due to economies of scale, we quantify the patient-level implica-
tions of this specialization, showing that access to subspecialized oncologists improves
survival, reduces spending and increases clinical trial enrollment.

Second, our research contributes to the broader literature on physician productiv-
ity, specialization, and its effects on treatment decisions and patient outcomes (Chan
and Chen, 2022; Baicker and Chandra, 2004). While prior work has documented differ-
ences in health care practices between specialists and generalists—particularly in volume-
outcome relationships among surgeons (Birkmeyer et al., 2002; Huckman and Pisano,
2006; Chandra and Staiger, 2007; Chowdhury, Dagash and Pierro, 2007; Sahni et al.,
2016; Avdic, Lundborg and Vikström, 2019)—there is limited causal evidence on the ef-
fects of specialization in settings where expertise is defined not by procedural frequency,
but by the breadth and depth of knowledge required for complex decision-making, as
in medical oncology. In addition, subspecialization is a relatively recent phenomenon,
and the absence of granular physician classifications and detailed patient outcomes has
constrained prior efforts to measure its effects beyond associational studies on select ma-
lignancies (Shanafelt et al., 2012; Davidoff et al., 2020; Caswell-Jin et al., 2025). This paper
addresses these limitations by constructing a new dataset on chemotherapy episodes, al-
lowing us to directly classify oncologists into subspecialties using micro-level data and
detailed patient characteristics—a level of granularity not documented in prior research.
Our findings contribute to the growing literature on the division of labor in healthcare,
providing new insights into how specialization influences the adoption of advanced treat-
ments and impacts patient survival.

Finally, our study provides new evidence on how subspecialization shapes access to
medical innovation. While prior research highlights disparities in clinical trial enroll-
ment and treatment diffusion (Agha and Molitor, 2018; Alsan et al., 2022), it remains un-
clear whether subspecialists facilitate access to cutting-edge therapies. Linking Medicare
claims to clinical trial data, we find that patients with greater access to subspecialized
oncologists are significantly more likely to enroll in cancer trials. In addition, subspecial-
ist access is associated with the use of newer chemotherapy drugs, as reflected by a lower
average age of prescribed agents. These findings suggest that subspecialization enhances
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access to medical innovation, with implications for both treatment equity and the role of
physician expertise in the diffusion of new therapies.

The organization of this paper is as follows. Section 2 provides details on the context
of medical oncology in the U.S. Section 3 describes our main data sources, the construc-
tion of our chemotherapy episodes (i.e., six-month episodes in which patients received
systemic anti-cancer therapy), and the definition of our instrumental variable. In Section
4, we discuss our empirical strategy and the assumptions underpinning our identifica-
tion approach. Section 5 presents our main results, Section 6 provides details on potential
mechanisms, before concluding with Section 7.

2 Background on Medical Oncology

Cancer is the second leading cause of death in the United States, with older populations
disproportionately affected. Among Medicare beneficiaries—predominantly comprised
of individuals 65 and older—cancer care is a significant driver of health care utilization
and costs. In 2015, cancer related health care spending was equivalent to 29% of overall
Medicare spending, amounting to $183 billion, reflecting the high prevalence and com-
plexity of cancer management in this population (Mariotto et al., 2020; Kaiser Family
Foundation, 2025). The unique challenges posed by cancer in older adults, including
comorbidities, frailty, and socioeconomic factors, necessitate specialized and coordinated
approaches to care.2

Medical oncology is a cornerstone of cancer treatment. Medical oncolo-
gists—physicians trained in both internal medicine and oncology—primarily manage
systemic therapies (i.e., cytotoxic chemotherapy, immunotherapy, targeted therapy, and
hormone therapy). For simplicity, we refer to all of these as chemotherapy throughout
the paper. Chemotherapy is typically delivered in one of two ways: infused or injected
therapy, which is administered under the supervision of a healthcare professional, and
oral therapy, which involves prescription medications taken by the patient in pill form.

In addition to prescribing and administering systemic anti-cancer and supportive care
treatments, medical oncologists play a central role in coordinating care across multidis-
ciplinary teams with surgical oncologists, radiation oncologists, and other health care
professionals. Advances in treatment modalities over the last few decades—such as
the development of targeted therapies addressing specific genetic mutations and im-

2The importance of subspecialization in ensuring up-to-date knowledge and optimal treatment is ex-
plicitly recognized by some cancer clinics and providers, who may emphasize it as part of their core
mission statements (see e.g. Yale Cancer Clinic (2025)).
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munotherapy leveraging the body’s immune system—have transformed the landscape of
cancer care (Sharma and Allison, 2015; Carroll et al., 2023). These innovations have im-
proved survival rates for many cancers, including those in advanced stages (Emens et al.,
2017). However, the increasing complexity of treatment regimens has also driven a trend
toward subspecialization within oncology since oncologists face the challenge of keeping
up-to-date with a rapidly expanding knowledge base (Lozinski, 2024) and availability of
new anticancer therapies. For example, from 2000 to 2022, 573 agents were approved for
various cancer indications (Scott et al., 2023). Similarly, Figure 1 demonstrates a sharp
increase in medical guidelines for five distinct cancer categories. Guideline page counts
between 2002 and 2020 have increased by over 300 percent for all cancer categories with
leukemia and lymphoma experiencing a guideline page increase of 731 percent.

The increasing complexity of oncology care presents opportunities for oncologists to
focus on specific cancer types or broader cancer categories, such as breast, gastrointesti-
nal, or thoracic cancers, allowing them to develop expertise in managing the nuances
of a set of specific malignancies. Subspecialization often centers around an anatomical
region of the body (e.g. the breast, prostate, or the gastrointestinal tract) or cancer type
(hematologic cancers). Subspecialized care may be particularly relevant for older pa-
tients, whose treatment plans require careful balancing of efficacy against potential risks
associated with aging and comorbidities. However, subspecialization also may introduce
challenges, particularly regarding equitable access to specialized care and potential frag-
mentation of care. Among Medicare beneficiaries, we find that the share of chemotherapy
episodes treated by subspecialized oncologists in 2020 was more than three times higher
in high income areas compared to low income areas (Karadakic et al., 2025).3 This geo-
graphic disparity is especially consequential for Medicare beneficiaries, many of whom
face barriers to travel or rely on local providers for care.

3 Data, Sample and Differential Distance Instrument

To define specialization of oncologists and assess the implications of access to subspecial-
ized oncologists we draw upon a variety of data sources. The cornerstone of our analysis
is a dataset containing chemotherapy episodes for the period 2008 to 2020, which is con-
structed utilizing 100% Medicare claims data accessed through the Center for Medicare
and Medicaid Services’ (CMS) Virtual Research Data Center (VRDC). We use data from

3See Appendix Figure D2 for differences in the share of chemotherapy episodes treated by highly
subspecialized oncologists across ventiles of the U.S. population ordered from lowest income to highest
income.
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2007 to 2021 from Medicare Parts A, B and D. In addition we supplement our main sam-
ple with data on socioeconomic characteristics of ZCTAs obtained through the US Census
Bureau. Furthermore, we are able to link information on clinical trials from clinicaltri-
als.gov to claims data using National Clinical Trial (NCT) numbers available in Medicare
claims. Information on the Food and Drug Administration (FDA) approval year of novel
cancer drugs was obtained from the National Cancer Institutes’s (NCI) Surveillance, Epi-
demiology, and End Results (SEER) Program which provides FDA approval year through
the Cancer Medication Enquiry Database (CanMED) and we link those to the relevant
HCPCS and NDC codes in our data (National Cancer Institute, 2025).

3.1 Chemotherapy Episode Data

The foundation of our analysis is the construction of a dataset containing cancer care
episodes as defined by the Oncology Care Model (OCM) (CMS, 2025). OCM was a value-
based payment and care delivery model introduced by CMS that aimed to improve the
quality and coordination of care for Medicare beneficiaries undergoing chemotherapy
while reducing overall health care costs.4 Following OCM methodology enables us to
leverage the clinical and institutional experience of a large federal government initiative
to capture an "industry standard" approach to measure cancer care. Using OCM defini-
tions, we can define non-overlapping six month chemotherapy episodes for beneficiaries
with cancer, assign episodes to a single cancer type, and assign a care coordinating prin-
cipal medical oncologist based on the plurality of office visits during a chemotherapy
episode.

In order to construct the final episode level data we include fee-for-service Medicare
beneficiaries with cancer who received oral or physician-administered chemotherapy (in-
cluding cytotoxic chemotherapy, targeted therapy, immunotherapy, and hormonal ther-
apy) (CMS, 2020; Keating et al., 2021). Individuals in the episode sample are enrolled in
Medicare Part A and B and do not receive the Medicare Endstage Renal Disease Benefit
(ESRD).

Chemotherapy episodes are constructed using Medicare claims data, specifically
physician-administered chemotherapy claims from Part B and Outpatient files (linked
to a cancer diagnosis on the claim) and prescription fills for chemotherapy agents from
the Part D event file.5 To ensure alignment between Part D claims and active treatment,

4OCM was in operation from July 2016-December 2022, we applied the episode identification method-
ology throughout our study period.

5A full list of all Part B drugs can be found in Appendix Table D1. National Drug Codes (NDC) are
available upon request, due to the significant number of codes used for drug identification.

9



prescription fills are included only if a corresponding Part B claim with a cancer
diagnosis occurred within the prior 59 days. Using this approach, we define 180-day
chemotherapy episodes starting from the initial chemotherapy claim. Each episode is
then assigned to the medical oncologist who handled the plurality of evaluation and
management (E&M) office visits during the episode. The cancer type for each episode
is determined based on the plurality of cancer diagnoses from office visits within the
episode (see Appendix Table D2). To account for the look back period and episode
definitions, we utilized claims data from 2007 to 2021, restricting our final analysis
sample to chemotherapy episodes initiated between 2008 and 2020.

3.2 Definition of Subspecialized Oncologists

To define whether a chemotherapy episode is coordinated by a subspecialized oncolo-
gist, we classify subspecialists as oncologists who provide at least 80 percent of their
chemotherapy episodes within a single cancer category in a given year. The 80 percent
threshold was chosen to reflect a balance between capturing clinicians whose work is
dominated by a single cancer type or set of related cancer types while allowing for the
reality that many oncologists have to treat common cancers for financial and clinical rea-
sons despite their subspecialty. In additional analyses below, we also examine a continu-
ous approach to defining specialization. Our dataset includes chemotherapy episodes for
cancers split into 9 broad categories: breast cancer, gastrointestinal (GI) cancers, gyneco-
logic cancers, head and neck cancer, hematologic cancers, prostate/genitourinary cancer,
melanoma, thoracic cancer, and other cancers. This analysis focuses on five of these
groups (breast cancer, GI cancer, hematologic cancers, prostate/genitourinary cancer,
and thoracic cancers) for which systemic therapy is available and is typically coordinated
by medical oncologists and together account for 90 percent of all identified episodes.
We exclude head and neck, skin, gynecologic, and other cancers for two reasons: first,
many of these cancers have care that is traditionally led by surgeons, not medical on-
cologists, particularly gynecologic and head/neck cancers. Second, the excluded groups
have small sample sizes, which makes it difficult to define distinct subspecialties using
a volume-based threshold. Under this classification, an oncologist is considered a breast
cancer subspecialist if at least 80 percent of their chemotherapy episodes in a given year
involve breast cancer episodes (Karadakic et al., 2025). The same 80 percent threshold
applies analogously to oncologists specializing in the remaining cancer categories.

Our primary measure of access to a subspecialized oncologist of the relevant cancer
type is an indicator for whether a beneficiary had any office visit with a subspecialized
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oncologist of the relevant cancer type during the calendar year in which chemother-
apy was initiated. As a secondary definition, we also consider whether the chemother-
apy episode was managed by a subspecialist of the relevant cancer type. While these
measures are highly correlated, they capture slightly different aspects of subspecialty
involvement in care.

To illustrate the geographic distribution of subspecialist utilization, Figure 2 plots the
share of chemotherapy episodes managed by subspecialized oncologists across Hospital
Referral Regions (HRRs) in 2008 and 2020. Subspecialist-managed care is disproportion-
ately concentrated in large metropolitan areas, particularly in the Northeast, Southwest,
and other major urban centers. The figure highlights both the spatial clustering of sub-
specialist care and how its prevalence has expanded over time.

3.3 Main Sample and Variable Definitions

The sample of chemotherapy episodes includes beneficiary identifiers, the date of the
initiating E&M claim for chemotherapy, the primary cancer type (see Table D2), whether
the initial chemotherapy agent was administered via infusion or oral drugs, and the
National Provider Identifier (NPI) of the care-coordinating oncologist.

We supplement this episode-level dataset with additional information from Medicare
claims data and external sources. First, we incorporate beneficiary information including
age, zip code, date of death, sex, and race—from the Master Beneficiary Summary File,
along with binary indicators for all 27 chronic conditions. Furthermore, we construct
a measure of predicted mortality using linear probability models trained on beneficia-
ries not included in our main sample and applied to our analytic sample.6 Zip codes
are converted into ZCTAs using publicly available crosswalks (Audirac, 2024). We also
construct annual health care access measures at the ZCTA level using Medicare claims
data. Finally, we merge in ZCTA-level population counts and annual median household
income from the American Community Survey. Summary statistics of our main variables
can be found in Table 1.

To measure spending associated with chemotherapy, we aggregate episode-level ex-
penditures beginning on the date of chemotherapy initiation and continuing through

6To construct predicted mortality, we use Medicare claims and enrollment data from 2006–2021 to
build a detailed beneficiary-level dataset with demographics, coverage indicators, chronic condition flags,
and prior-year utilization measures (e.g., provider visits, ER use, hospitalizations). After addressing miss-
ingness through additional binary indicators equal to one if a variable is missing, we estimate a linear
probability model of death in the current year using beneficiaries not included in our main sample. We
then apply this model to all beneficiaries included in our main sample to generate individual-specific
predicted mortality scores, capturing underlying health risk without reflecting treatment choices.
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180 days post-initiation, or until the beneficiary’s date of death if death occurs within
that window. Our measure of total spending includes payments made by Medicare, out-
of-pocket spending by beneficiaries, and payments from other primary non-Medicare
payers. This approach captures a more comprehensive view of the financial burden as-
sociated with care, beyond government expenditures alone. We disaggregate spending
by Medicare Parts (A, B, and D), by claims source (e.g., Carrier, Outpatient, Inpatient),
and further by Restructured-Berenson-Eggers Type of Service Code subcategories to shed
light on the underlying components and drivers of spending patterns (CMS, 2024).7

To examine other health outcomes and health care utilization, we leverage 100% Medi-
care samples, extracting enrollment in clinical trials (NCT number) from the Carrier file
and constructing acute myocardial infarction, hip fracture, and stroke indicators using
diagnostic related group codes from the Inpatient file.8 We also use Medicare claims data
to construct measures of prior healthcare utilization, including hospitalizations, primary
care visits, emergency room visits, and cancer screening utilization, providing insight
into beneficiaries’ healthcare engagement before chemotherapy initiation.

3.4 Differential Distance Measure

The core of the empirical strategy relies on an instrumental variable constructed from
the differential distance between a beneficiary’s ZCTA and the nearest general oncologist
versus the nearest subspecialized oncologist for the relevant cancer type. Because exact
residential addresses are not available, we proxy beneficiary location using the centroid
of their ZCTA in each year. For oncologists, we use the centroid of their modal ZCTA
based on office visits recorded in Medicare Part B claims. Year-specific distance matrices
are drawn from the NBER ZIP Code Distance Database (National Bureau of Economic
Research, 2025).

DDcit = Dist. Subspecialistct − Dist. Generalistt

Formally we define differential distance DD for a beneficiary with cancer type c and
ZCTA i in year t as the difference between the nearest subspecialist with the relevant can-
cer subspecialization (e.g. breast cancer subspecialist for beneficiaries with breast cancer)
and the distance to the nearest general oncologist.9 Due to increases in subspecialization
among medical oncologists over time differential distances between subspecialists and

7We provide a detailed overview of our spending definitions in Appendix A.
8See Appendix Table D3 for details on the definition of these outcomes.
9General oncologists are defined as all oncologists who do not manage 80% of cancers within one

cancer type or set of related cancer types.
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generalists become smaller over time (see Figure D3).
To construct our main sample, we restrict chemotherapy episodes to those with non-

negative differential distances, meaning cases where subspecialists are located further
away than general oncologists. Additionally, we exclude episodes with distances ex-
ceeding the 95th percentile of the annual distribution for either subspecialists or general
oncologists.10 This restriction avoids drawing inferences from outlier observations in ge-
ographically remote locations. After applying these criteria, our final sample retains 90%
of the original chemotherapy episodes, encompassing 6.1 million unique chemotherapy
episodes, 2.2 million unique beneficiaries treated by 17,679 distinct medical oncologists
between the years 2008 to 2020.

Due to the non-linear relationship between the instrument and our measure of sub-
specialist access we additionally transform our measure of differential distance using the
inverse-hyperbolic-sine (IHS) transformation. This transformation is frequently used to
approximate the logarithmic transformation in regression models, while simultaneously
allowing for negative and zero values of a variable. For cases where the IHS transfor-
mations enter regression models on the right hand side of the equation, as in our case,
the interpretation of the slope parameter changes slightly particularly for small values
of the explanatory variable (Bellemare and Wichman, 2020). We therefore define our
instrument as follows:

z = sinh−1(x) = ln
(

x +
√

x2 + 1
)

This transformation ensures that we are able to capture the non-linear relationship
between differential distances and access measures while also capturing the significant
number of chemotherapy episodes where distances to subspecialists and general oncol-
ogists are equivalent. In Figure 3 Panel 3a we present the unadjusted first-stage rela-
tionship between our instrument and the probability of having any office visit with a
subspecialized oncologist of the relevant cancer type within the same year as chemother-
apy initiation. Several aspects stand out, first, with increasing differential distance be-
tween subspecialists and general oncologists the share of episodes where the beneficiary
has seen any subspecialized oncologist of the relevant cancer type declines. Second, the
probability of having any office visit with a relevant subspecialist increases over time,
reflecting the increasing subspecialization of medical oncologists in the US. Third, the
negative relationship between differential distance and access to subspecialized oncolo-
gists is mostly increasing over time.11 Notably, the instrument and a binary indicator of

10Only 118,527 chemotherapy episodes are assigned negative differential distances.
11In 2020 the negative relationship between the instrument and access to subspecialists attenuates
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having a subspecialized oncologists of the relevant cancer type as the care coordinating
oncologist is also highly correlated and extremely similar in magnitude to the first stage
relationship between our main access measure and the instrument (see Figure 3 Panel
3b).

4 Empirical Strategy

The goal of our empirical analysis is to understand the effect of access to subspecialized
oncologists on patient health outcomes and spending. Due to differential access and
selection of patients to more specialized medical oncologists it is not possible to simply
compare individuals who have access to subspecialized oncologists versus those who do
not. Evidence on the benefits of access to highly specialized physicians mainly comes
from surgical specialties, where there is a clear relationship between increased volume
of a surgical procedure and patient outcomes (Halm, Lee and Chassin, 2002; Birkmeyer
et al., 2002; Sahni et al., 2016; Avdic, Lundborg and Vikström, 2019). For medical oncol-
ogists there is only limited evidence on the effects of specialized oncologists on patient
outcomes, with none of the studies significantly addressing selection effects with respect
to access to subspecialized oncologists (see Shanafelt et al. (2012); Davidoff et al. (2020);
Caswell-Jin et al. (2025)). However, due to the geographic concentration of subspecialized
oncologists and the resulting differences in patient populations treated by subspecialized
versus general medical oncologists, simple selection on observable strategies will not dis-
entangle causal effects from adjusted associations.

Our approach to estimating the impact of access to subspecialized oncologists lever-
ages variation in patients’ exposure to subspecialized care based on their geographic
location and the timing of chemotherapy initiation among cancer patients. We focus on
patients undergoing chemotherapy because this group represents the “marginal” pop-
ulation of particular interest to policymakers due to their cost and high clinical risk.
Chemotherapy is also central to the clinical implications of receiving specialized versus
general oncologic care.

The empirical design in this study uses a distance-based instrument which has been
employed in a variety of studies in the health economics literature (McClellan, McNeil
and Newhouse, 1994; Card, Fenizia and Silver, 2023; Gruber et al., 2025). One of the
main concerns with distance based instruments is the endogeneity of provider location.
The distance of more subspecialized oncologists might be associated with patient char-

slightly towards zero compared to the year 2019. We attribute this to effects of the COVID-19 pandemic,
which made physical access to cancer treatment and oncologic care more difficult (Nogueira et al., 2024).
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acteristics that both influence our measure of access and specific health outcomes. For
example, patients in more affluent suburban areas might live further away from subspe-
cialized oncologists often located in academic medical centers in downtown areas, while
also generally having better health outcomes. We address this issue in two ways. First,
we do not solely base our empirical strategy on distance, but instead construct differen-
tial distance, a measure that captures the relative ease of access of one oncologist over
the other. Second, we augment our instrumental variable strategy by including ZCTA
fixed effects, so that we compare individuals in the same ZCTA at different points in time
when access to subspecialized oncologists differed.12 The variation in access therefore
results from changes in differential distances within the same ZCTA over time, resulting
from oncologists specializing, exiting and entering markets.

To illustrate the variation leveraged in our empirical strategy, Figure 4 presents the
standard deviation of the residualized differential distance measure across selected
metropolitan areas, aggregated at the Hospital Service Area (HSA) level.13 We construct
the residualized differential distance by regressing our instrument on ZCTA and cancer
type-by-year fixed effects. We then standardize the resulting residuals to have mean zero
and unit variance, average them by HSA and year, and finally calculate the standard
deviation of these yearly HSA-level averages over time. This measure captures the
within-HSA temporal variation in access to subspecialized oncologists that underlies
our identification strategy.

Panels 4a (Raleigh, NC) and 4b (Dallas, TX) depict metropolitan areas with relatively
high within-HSA variation, while Panels 4c (Atlanta, GA) and 4d (Seattle, WA) show ar-
eas with moderate variation. In contrast, Panels 4e (Boston, MA) and 4f (New York City,
NY) illustrate regions with relatively low within-HSA variation. These maps provide
visual intuition for the identifying variation: our empirical strategy relies on changes in
access to subspecialized care that result from oncologist entry, exit, or shifts in special-
ization over time within the same geographic area.

We use two-stage least squares to estimate the effect of subspecialist access on out-
comes of beneficiaries. In the first stage we estimate the effect our differential distance
instrument on access to subspecialized oncologists:

Accessi = α + βDDt(i)z(i) + δXi + τt(i) + γz(i) + ψDt(i)z(i) + εi (1)

12In Appendix Figure D4 we provide plots for the distribution of our instrument before and after
residualizing for the relevant ZCTA and cancer type-by-year fixed effects.

13While our empirical strategy exploits variation at the ZCTA level, data use restrictions prevent us
from displaying beneficiary-level ZCTA visualizations.
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for episode i in ZCTA z in cancer type-by-year t, where DD captures the inverse hyper-
bolic sine of the differential distance between a subspecialized oncologist of the relevant
cancer type and a general oncologist at the ZCTA and year level. The vector Xi includes
beneficiary demographic and chronic conditions, as well as ZCTA level controls which
vary over time. D is a simple distance measure capturing the distance to the nearest
oncologist of any kind, τt(i) is a cancer type-by-year fixed effect and γz(i) a ZCTA fixed
effect.14 The dependent variable Accessi is a binary indicator variable equal to one if
a beneficiary has had any office visit with a subspecialized oncologist of the relevant
cancer type during the year in which chemotherapy was initiated.

Next, we estimate the effect of access to a subspecialized oncologist on mortality,
spending, clinical trial enrollment and drug use. We estimate:

Yi = α + βÂccessi + δXi + τt(i) + γz(i) + ψDt(i)z(i) + εi (2)

where Yi are different mortality indicators, clinical trial enrollment indicators and other
outcome measures.

Using this instrumental variable design allows us to estimate a local average treatment
effect (LATE) for a complier subgroup for whom the instrument, differential distance,
decreases the probability to have any office visit with a subspecialist of the relevant
cancer type. The validity of our instrument necessitates the standard monotonicity and
exclusion assumptions. Monotonicity in our setting means that individuals for whom
the distance to the subspecialist versus a general oncologist increases the probability
of access to a subspecialist weakly decreases. The exclusion restriction in our specific
case requires that differential distance to a subspecialist versus a general oncologist only
affects spending, mortality and clinical trial enrollment through access to subspecialized
oncologists and we discuss this in more detail in Section 5.4.

Table 2 presents a direct test of the relevance condition by reporting first-stage esti-
mates for our primary measure of access to subspecialized oncologists of the relevant
cancer type. The first-stage coefficient remains highly significant, even after controlling
for our full set of design covariates and fixed effects. Additionally, the first-stage F-
statistic is large, indicating that our instrument generates sufficiently strong variation in
access to subspecialists (Lee et al., 2022).

14We define fixed effects using 46 detailed cancer types, whereas subspecialist classification is based on
five broader cancer categories. Table D2 provides an overview of the ICD codes corresponding to each
category.
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5 Main Results

In this section, we present our main findings on the effects of access to subspecialized
oncologists of the relevant cancer type on patient outcomes. We find that access to a
subspecialized oncologist significantly reduces mortality in the medium term, but has
no significant effect on short-term mortality (under one year). These estimates contrast
with the positive mortality effects suggested by structural form OLS estimates, indicating
substantial selection effects in determining who receives care from subspecialists. The
second part of our main results is comprised of a detailed look at health care spending
per chemotherapy episode, where we find significant spending reductions driven by
Part B chemotherapy spending. Following our main results on mortality and spending,
we examine the characteristics of the complier subgroup and assess the validity of the
exclusion restriction.

5.1 Mortality

Our primary health outcome measure is mortality, defined as the time from chemother-
apy initiation until the date of death. We construct binary indicators for mortality at
various time intervals, setting the variable to one if a patient dies within a given period
after starting chemotherapy. These indicators range from 90-day mortality to 1,080-day
mortality, in 90-day increments. To estimate the effect of subspecialist access, we apply
Equation 2 and plot the 2SLS estimates in Figure 6 Panel 6a. The results indicate no sta-
tistically significant mortality effects within the first year after chemotherapy initiation.
However, beyond this point, mortality declines steadily. Specifically, access to a subspe-
cialized oncologist for the relevant cancer type reduces 1-year (360-day) mortality by 2
percentage points. Given an average 1-year mortality rate of 17 percent, this corresponds
to an 11 percent reduction relative to the mean.

Notably, the mortality reduction continues to grow, reaching 3.7 percentage points
at 2 years (720 days) post-initiation before stabilizing. Although the absolute reduction
plateaus, baseline mortality continues to rise over time, reducing the relative effect size.
To account for this, Figure 6 Panel 6b scales the mortality estimates relative to the popu-
lation’s mean mortality. The results show that relative mortality reductions peak at 12.8
percent for 630-day mortality before gradually declining again. This pattern suggests
that while access to subspecialized oncologists mitigates medium-term mortality risk,
its impact diminishes over time, likely reflecting the progression of age and underlying
disease including comorbidities.

In contrast to the negative mortality effects estimated using 2SLS, the OLS estimates
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of the structural form suggest that access to subspecialists is significantly positively cor-
related with mortality. For example, OLS results indicate that having access to a subspe-
cialized oncologist is associated with a 0.6 percentage point increase in 1-year (360-day)
mortality and a 1.4 percentage point increase in 3-year (1,080-day) mortality (see Table 3).
This pattern suggests negative selection into treatment, where patients with more severe,
complex, or advanced-stage cancers may be more likely to receive care from subspecial-
ized oncologists.

We recognize that tumor characteristics such as cancer stage, grade, histology, and
tumor markers are important drivers of cancer outcomes that we cannot measure. Thus,
we conduct a series of robustness checks to ensure that our mortality results are not
driven by selection into treatment or by the volume of cases treated by the coordinat-
ing oncologist within specific cancer types. First, we estimate models using samples
that vary by the time window over which mortality is measured (Table D4), and find
consistent results across specifications. Second, we control for the care-coordinating on-
cologist’s episode volume across the five main cancer types by including inverse hyper-
bolic sine–transformed measures of episode volume for each category, and again find
that results remain similar (Table D5). Finally, we restrict the sample to only the first
chemotherapy episode per beneficiary, and the findings remain robust (Table D6).

Furthermore in Appendix C, we assess whether the observed mortality effects reflect
differences in treatment rather than selective entry into chemotherapy.15 Using a new
sample of over 3.2 million initial oncology consultations, we find that patients whose
first visit is with a subspecialist are more likely to initiate chemotherapy within 180
days—especially within the first 60 days. Importantly, we detect no mortality differences
following the initial visit, either among all patients or among those who never initi-
ate chemotherapy. Restricting the main chemotherapy sample to patients observed at
the consultation stage, we recover mortality effects nearly identical to our main results,
even after flexibly controlling for the time between consultation and treatment initia-
tion. Taken together, these findings suggest that subspecialists do not selectively treat
healthier patients; rather, the observed survival benefits stem from differences in how
chemotherapy is delivered.

5.2 Episode Spending

Motivated by the observed mortality benefits of subspecialist access, we next examine its
impact on chemotherapy episode spending. We construct comprehensive episode-level

15These results are preliminary, and we are actively conducting additional analyses to better understand
the role of subspecialist consultation and selection into treatment.
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spending measures that include Medicare payments, beneficiary out-of-pocket costs, and
payments from non-Medicare primary payers, capturing all spending from chemother-
apy initiation through 180 days or until death, if earlier. This approach reflects the total
cost of care rather than Medicare spending alone. Appendix A provides details on mea-
sure construction and descriptive statistics. Briefly, average episode spending has risen
over time, driven largely by increases in Part B and Part D expenditures. The share of
Part D spending grew from 9.3% in 2008 to 32% in 2020, highlighting a shift toward oral
chemotherapy agents.

Panel A of Table 4 presents estimates from our main 2SLS specification for total spend-
ing and its components by Medicare Part. We find that access to subspecialized oncol-
ogists reduces total episode spending by approximately $1,247, or 3.5% of the average,
though the estimate is not statistically significant. Disaggregating by spending source,
we observe no significant effect on Part A or Part D spending. However, Part B spending
declines significantly by $1,342—equivalent to a 6.2% reduction relative to the average
Part B episode spending—suggesting that subspecialist care may reduce use of high-cost
physician-administered services.

We further decompose Part B spending and find that the overall reduction associated
with subspecialist access is driven by lower spending in the Carrier file, while Outpatient
spending increases (Appendix Table D8).16 Using the Restructured BETOS classification,
we identify chemotherapy agents and injection/infusion services as the primary sources
of cost savings (Appendix Table D9). To assess whether reductions stem from high-
or low-cost procedures, we classified procedure codes into average episode spending
quintiles and aggregated episode-level spending by quintile. Results indicate that the
decline in Part B spending is driven almost entirely by reduced use of high-cost drugs
per episode (see Appendix Table D10).17

5.3 Complier Characteristics

Our instrumental variable estimates identify local average treatment effects (LATEs),
capturing the effect of access to a subspecialized oncologist for the subgroup of com-
pliers—patients who are quasi-randomly assigned to a subspecialist due to differential

16The higher average hospital outpatient spending associated with subspecialist care is consistent with
the fact that many subspecialists practice in hospital-based settings, including NCI-designated cancer cen-
ters, and chemotherapy spending for these doctors is included in the hospital outpatient files.

17In preliminary analyses, we find that access to subspecialists reduces the use of biologics when lower-
cost biosimilars are available. For instance, subspecialist access decreases the use of levoleucovorin in
favor of the biosimilar leucovorin, which is commonly co-administered with 5-FU in colorectal cancer.
We also observe reduced use of pegfilgrastim and filgrastim, white blood cell growth factors often used
prophylactically during chemotherapy.
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distance. To characterize these compliers, we follow (Gruber et al., 2025), estimating
the first-stage relationship between our instrument and subspecialist access within sub-
groups defined by age, race, cancer type, and comorbidities. We then compute kappa
values, weighting each subgroup’s sample share by its first-stage coefficient relative to the
full sample, to quantify its contribution to the complier population. Finally, we compare
complier characteristics to the overall sample using reweighted means.

Table 5 presents this comparison, showing that compliers tend to be slightly older,
less likely to be female, and more likely to be black. On average, they appear healthier
based on chronic condition indicators, being less likely to have chronic condition flags
for colorectal, endometrial, lung, and breast cancer, but more likely to have a chronic
condition flag for prostate cancer.

5.4 Exclusion Restriction

In Section 4, we outlined the conditions necessary for the validity of our instrumental
variable approach and for our 2SLS estimates to obtain a LATE interpretation. In our set-
ting, the exclusion restriction requires that mortality—or any other relevant outcome—is
affected by our instrument only through its impact on access to a subspecialized oncol-
ogist of the relevant cancer type. A broader interpretation, extending to an endogenous
variable that is not strictly binary, is that the instrument should influence mortality solely
through changes in the level of oncologist specialization available to a beneficiary, we will
make use of this interpretation in a later section of this paper.

To assess the validity of this assumption, we provide balancing tests demonstrating
that our instrument is uncorrelated with beneficiary characteristics, conditional on con-
trols and fixed effects. Additionally, we show that our instrument is strongly correlated
with many beneficiary characteristics in the absence of controls and fixed effects, under-
scoring the necessity of the conditional independence assumption for identification.

Figure 5 examines the relationship between our instrument and variables falling into
three broad categories of beneficiary characteristics: chronic conditions, prior healthcare
utilization, and other characteristics. We estimate these associations using both an un-
adjusted model, which excludes controls and fixed effects (solid purple dots), and an
adjusted model (hollow orange dots), which incorporates our full set of controls (ex-
cluding chronic conditions and demographics) and fixed effects. The unadjusted results
indicate that the instrument is significantly associated with many beneficiary charac-
teristics, highlighting the potential for a violation of the independence assumption and
exclusion restriction. However, once we include ZCTA-level controls and fixed effects,
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these associations effectively disappear, suggesting that conditional independence holds
for the set of observable characteristics presented in Figure 5.18

To further strengthen the validity of our exclusion restriction, we conduct two falsi-
fication tests. First, for each chemotherapy episode, we randomly reassign differential
distances within years and re-estimate our main specification from Equation 2 using 1-
year mortality as the outcome. We repeat this randomization 100 times and find that
none of the 2SLS estimates are statistically significant at conventional levels (see Ap-
pendix Figure D6). The null results arise because randomizing differential distances
breaks the first-stage relationship—differential distance becomes uncorrelated with ac-
cess to a subspecialized oncologist of the relevant cancer type—supporting the idea that
our instrument relies on meaningful geographic variation in access.

As a second falsification exercise, we reassign differential distances based on the near-
est subspecialist of an unrelated cancer type. For example, we assign breast cancer pa-
tients the differential distance to the nearest gastrointestinal cancer subspecialist. We
perform this reassignment for multiple cancer type combinations and estimate Equation
2 across different mortality outcomes (see Appendix Figure D5). The logic of this test
is that if cancer-type-specific expertise is the key mechanism, differential distances to
unrelated subspecialists should not systematically impact mortality. Consistent with this
interpretation, we find no evidence of systematic mortality effects when using differential
distances to subspecialists of unrelated cancer types.

6 Mechanisms

In this section, we examine potential mechanisms underlying our main mortality findings
in greater detail. We separate these into three categories. First, we analyze differences
in the utilization of health care during chemotherapy that could potentially be linked
to differences in mortality. We particularly focus on the enrollment in clinical trials, the
age of chemotherapy drugs used for chemotherapy, the role of end of life care and the
importance of the health care provider mix for potential care fragmentation. Second,
we analyze the effects of the intensive margin of oncologists’ specialization on patient
outcomes. Finally, we present additional evidence on health outcomes that should be
unaffected by access to subspecialized oncologists, providing further support for the
validity of our identification strategy.

18We also provide the balancing results as Appendix Table D7.
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6.1 Health Care Utilization during Chemotherapy

6.1.1 Clinical Trial Enrollment

One potential mechanism through which subspecialist access improves survival is by
facilitating access to novel and potentially life-saving treatments. While clinical trial en-
rollment alone is unlikely to account for the full mortality effect, it highlights meaningful
differences in care utilization between patients with and without access to subspecial-
ists. To assess this, we examine whether beneficiaries enrolled in clinical trials, using
Medicare claims data from 2014 onward—when reporting of clinical trial identifier codes
(NCTs) became mandatory for covered research services (CMS, 2014). We define clinical
trial participation based on the presence of an NCT number on any claim during the year
of chemotherapy initiation.

To supplement these administrative data, we incorporate information from Clinical-
Trials.gov, focusing on non-observational trials and the primary condition each trial tar-
gets. Additionally, we use OpenAI’s GPT-4 to classify trials into our broader cancer cate-
gories, enabling us to distinguish between overall cancer trial enrollment and enrollment
in trials specific to a patient’s cancer type. This classification helps assess whether access
to subspecialists increases general clinical trial enrollment or selectively improves access
to trials that are more directly relevant to a patient’s diagnosis. Appendix B provides
further details on the classification methodology.

Overall, subspecialized oncologists are more likely to enroll beneficiaries in clinical
trials of any type, as shown in Figure 7. However, enrollment in unspecified cancer trials
(i.e. trials targeted toward cancer treatment in general) and non-cancer trials remains
low for both general and subspecialized oncologists (see Panels 7c and 7d). On average,
general oncologists enroll approximately 1 percent of beneficiaries in cancer trials, with
an even lower proportion enrolling in cancer trials specific to the patient’s cancer type.
In contrast, subspecialists enroll beneficiaries at roughly four times this rate (see Panels
7a and 7b).

To assess whether clinical trial enrollment is causally driven by access to subspecial-
ists rather than selection into treatment, we estimate Equation 2, using as an outcome a
binary indicator for whether a beneficiary enrolled in a clinical trial within the year of
chemotherapy initiation.19 Table 6 presents 2SLS and OLS estimates on the relationship
between access to a subspecialized oncologist of the relevant cancer type and clinical trial
enrollment across different trial types. Panel A suggests that access to a subspecialist of

19We do not directly test whether the oncologist is responsible for enrolling the beneficiary in a clin-
ical trial, nor do we investigate whether claims with NCT numbers are specifically linked to oncologists
coordinating the beneficiary’s care.
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the relevant cancer type increases enrollment in any cancer trial by 2.2 percentage points,
a 116 percent increase relative to the sample mean. The effect is similar in magnitude
for cancer-type concordant trials, with an estimated increase of 1.8 percentage points, or
113 percent relative to the mean. Notably, there is no statistically significant difference
in enrollment for unspecified cancer trials or non-cancer trials, in contrast to the OLS
estimates and raw unadjusted shares presented in Figure 7. While we do not directly
test whether trial enrollment drives mortality reductions and few Medicare beneficiaries
enroll in clincal trials, these findings reflect a key difference in healthcare utilization be-
tween individuals with access to subspecialized oncologists that may contribute modestly
to the observed survival benefits of subspecialist care.

6.1.2 Age of Cancer Drugs

To assess the age of cancer drugs used during treatment, we linked FDA approval
years—sourced from the NCI SEER Program and matched to relevant HCPCS and NDC
codes—to Medicare claims data. We then calculated the average approval age of all
chemotherapy drugs administered during the year of treatment initiation. For Part B
drugs, we computed a weighted average based on the number of claim lines per HCPCS
code; for Part D drugs, we used the number of prescription fills per NDC code as weights.

Due to limitations on the indication of cancer drugs and the respective approval year
and the lack of clinical information available for our patient episodes, we are unable to
match the FDA approval year specifically to the indication for the patient’s cancer type;
instead we focus on the approval year of the cancer drug.20

Table 7 presents both IV and OLS estimates of the effect of access to a subspecialized
oncologist of the relevant cancer type on the average age of chemotherapy drugs used.
Column (1) reports results for oral drugs (covered under Medicare Part D), column (2) for
physician-administered drugs (covered under Part B), and column (3) combines both. We
find no significant effect of subspecialist access on the age of Part D drugs. However, for
physician-administered drugs, we observe a marginally statistically significant reduction
in drug age at the 10 percent level. Specifically, access to a subspecialized oncologist
is associated with a one-year decrease in the average age of the physician-administered
drug. The combined measure of drug age across oral or physician-administered drugs
also shows a marginally statistically significant reduction of approximately 0.6 years,
suggesting that the effect is primarily driven by physician-administered therapies.

20The weighting approach does not account for differences in dosage, quantity administered, or inten-
sity of use across drugs, and therefore captures the average approval year based on utilization frequency
rather than total drug volume or dosage.
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6.1.3 End of Life Care

Chemotherapy patients in our main sample—who are 67 and older with many hav-
ing multiple chronic conditions—experience high mortality rates. Within one year of
initiating chemotherapy, 17.3% of beneficiaries in our main sample have died. This in-
creases to 30% at two years and 38.5% at three years.21 Given these patterns, the intensity
and nature of care at the end of life becomes an important aspect of cancer treatment,
with significant implications for both quality of care and healthcare costs (Zeltzer et al.,
2023). Treatment choices near the end of life may also reflect broader patterns in clinical
decision-making influenced by access to subspecialized oncologists.

To examine this, we construct four measures of end-of-life care intensity, all defined
over the last 30 days of life and limited to patients who die during or within 30 days after
a chemotherapy episode. Specifically, we define (1) an indicator for any emergency room
(ER) visit, (2) an indicator for any intensive care unit (ICU) stay, (3) an indicator for any
hospice claim between 30 and 3 days before death, and (4) an indicator for hospice use
in the last three days of life. ER and ICU visits are typically considered markers of high-
intensity or aggressive care at the end of life (Jang et al., 2015). In contrast, earlier hospice
enrollment (30–3 days before death) is generally viewed as a marker of less aggressive,
more comfort-focused care. Hospice initiation in the final three days of life, however, is
often considered too late to provide meaningful benefit.

To avoid conditioning on death, we construct end-of-life treatment measures for the
full sample and interact them with an indicator for death during or within 30 days
of chemotherapy.22 This allows estimation on the full sample, improving power and
generalizability. The interpretation changes: effects now reflect how subspecialist access
influences both the probability of short-term mortality and, conditional on death, the
intensity of end-of-life care.

Table 8 presents estimates for end-of-life outcomes. We find no significant effect of
subspecialist access on ER or ICU visits in the last 30 days of life, nor on hospice use in
the final 3 days. However, access to subspecialists significantly reduces the likelihood of
any hospice claim between 30 and 3 days before death. The magnitude—representing
a 29% reduction relative to the mean—suggests a shift away from comfort-focused care
and toward slightly more intensive treatment at the end of life.23

21The age-adjusted death rate in the US in 2015 was only 733 per 100,000 which in comparison is less
than one percent of the US population (Xu et al., 2016).

22Appendix Table D11 shows that, in the selected sample of decedents, access to subspecialists is asso-
ciated with a higher likelihood of ICU admission in the last 30 days of life, but does not significantly affect
other end-of-life health care utilization.

23Detailed spending results also indicate that access to subspecialists significantly reduces hospice-

24



6.1.4 Provider Mix and Fragmentation

Next, we assess whether access to subspecialized oncologists affects the composition and
diversity of providers involved during chemotherapy. Using the Carrier and Outpatient
files, we extract all office visits occurring within each beneficiary’s chemotherapy episode
and construct three episode-level measures: (1) the total number of office visits, (2) the
number of unique providers, and (3) the number of unique provider specialties. We
estimate the effect of subspecialist access on each outcome using our main instrumental
variable strategy (Equation 2).

Results in Table 9 show that subspecialist access has no discernible effect on the num-
ber of office visits or the diversity of provider specialties involved. However, it is associ-
ated with a modest but statistically significant 4.5% reduction in the number of unique
providers relative to the mean.

These findings suggest that subspecialists may deliver care through a more stable
and coordinated provider team, without increasing provider diversity or visit frequency.
While specialization is often associated with greater care fragmentation, we find no ev-
idence of such an effect. Instead, the modest decline in provider count points to more
streamlined care delivery under subspecialist management.

6.2 Degree of Oncologist Specialization

Our binary measure of access to a subspecialized oncologist provides a straightforward
way to compare mortality outcomes between patients who receive care from subspecial-
ists and those who do not. This measure captures the effect of access to specialization
on mortality at the extensive margin. However, an important question remains: to what
extent does the degree of specialization influence patient outcomes?

Rather than simply distinguishing between general oncologists and subspe-
cialists—where subspecialists are defined as those treating at least 80 percent of
chemotherapy episodes within a single cancer category—we investigate whether fur-
ther specialization within a cancer type improves patient outcomes. The underlying
hypothesis is that a narrower clinical focus may enhance expertise, leading to greater
improvements in mortality. To test this hypothesis we constructed oncologist level
Herfindahl-Hirschman Indices (HHI) of chemotherapy episodes of different cancer
types, using a more detailed classification of cancer types capturing 46 different
categories, as opposed to the 5 broad categories used above. The HHI is defined as

related expenditures during chemotherapy episodes—by an average of $291, corresponding to a 77.6%
decline relative to mean hospice spending per episode.
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follows:

HHIi =
N

∑
c=1

s2
ic where s =

eic

∑N
c=1 eic

(3)

where HHI for oncologist i is calculated as the sum of the squared shares of chemother-
apy episodes across cancer types. The episode share for cancer type c is defined as the
number of chemotherapy episodes eic for that cancer type, divided by the total number
of chemotherapy episodes the oncologist manages in a given year. The HHI ranges from
0 to 1, where higher values indicate greater specialization, meaning a larger share of an
oncologist’s caseload is concentrated within a single cancer type. We construct this mea-
sure separately for each year and each oncologist, using a more granular classification of
cancer types than our five main cancer categories used to define subspecialists. The HHI
is strongly correlated with subspecialist status. In 2020, at least 70 percent of oncologists
in the top three deciles of the HHI distribution were classified as subspecialists, while
the top two deciles consisted entirely of subspecialists.24

In Table 10, we present 2SLS estimates of Equation 2, replacing our binary access mea-
sure with the care-coordinating physician’s HHI as the endogenous variable. Under the
assumptions of instrument independence, monotonicity, relevance, and exclusion, this
specification allows us to estimate the causal effect of increased physician specialization
on patient mortality. Previously, we argued that differential distance should affect patient
health outcomes only through access to a subspecialized oncologist, and that any alter-
native pathways would violate the exclusion restriction. In this context, one could argue
that the degree of specialization is a downstream consequence of access to a subspecial-
ist, implying that the instrument primarily affects outcomes by influencing our binary
access measure, which in turn operates through the care coordinating oncologist’s degree
of specialization. This interpretation suggests that the degree of physician specialization
is an integral mechanism through which subspecialist access impacts patient mortality.

Focusing on Panel A of Table 10, we observe patterns consistent with our main find-
ings—mortality reductions relative to the population mean diminish over time, suggest-
ing that specialization can only lower mortality rates to a certain extent. The causal effect
of an increase in the care-coordinating oncologist’s HHI is not statistically significant

24Appendix Figure D8 illustrates the distribution of oncologists’ Herfindahl-Hirschman Index (HHI)
values and their association with the subspecialist definition used in this study. As expected, higher HHI
deciles—indicating greater concentration in treating a specific cancer type—are associated with a higher
proportion of oncologists classified as subspecialists. Notably, some subspecialists also appear in the
lower HHI deciles. This is consistent with our definition, which is based on broader cancer categories:
an oncologist may qualify as a subspecialist even while treating a mix of detailed cancer types within a
broader category.
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within the first 180 days but leads to significant mortality reductions thereafter. For in-
stance, a 0.1 increase in HHI reduces 3-year mortality by 1 percentage point, correspond-
ing to a 2.6 percent reduction relative to the mean 3-year mortality rate. For context,
the average difference in HHI between a subspecialized and a general oncologist is 0.45
points. Scaling our point estimate using this difference suggests a 4.6 percentage point
decline in 3-year mortality, which is slightly larger than the corresponding estimate in
Figure 6, Panel 6a, suggesting potential non-linearities in the relationship between HHI
and mortality. OLS estimates in Panel B of Table 10 suggest smaller mortality reduc-
tions for the same increase in HHI, implying that despite potential negative selection of
beneficiaries, the degree of physician specialization remains an important determinant
of patient survival.

6.3 Placebo Outcomes

One potential concern is that patients with access to subspecialized oncologists may also
have better access to higher-quality clinicians more broadly, which could independently
contribute to improved survival. If true, the observed mortality benefits might reflect the
overall quality of a patient’s care team rather than the specific expertise of subspecialized
oncologists. However, prior evidence—such as higher enrollment in cancer-specific clin-
ical trials and improved outcomes among more narrowly focused oncologists—suggests
that subspecialist access itself plays a meaningful role. To further test whether our results
are driven by cancer-specific expertise rather than broader differences in care quality, we
examine placebo outcomes unrelated to oncology care, such as mortality following hip
fracture, stroke, and acute myocardial infarction.

If broader care quality is driving our results, we would expect to see improvements
in health outcomes beyond mortality. However, because cancer and its treatments have
significant systemic effects, particularly on the immune system and overall health of
older individuals, there are few outcomes that can be completely isolated from cancer’s
influence. Given this limitation, we focus on three outcomes that are arguably less di-
rectly related to cancer treatment: acute myocardial infarctions (AMI), hip fractures, and
strokes in the two years following chemotherapy initiation. These conditions are less
likely to be directly influenced by cancer care because (1) myocardial infarctions and
strokes are primarily driven by cardiovascular health and pre-existing risk factors rather
than oncologic treatment decisions, (2) hip fractures are mostly (but not entirely) related
to musculoskeletal health, falls, and osteoporosis, which are not primary concerns in
oncologic care, and (3) while some cancer treatments may have secondary effects on car-
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diovascular and bone health, these outcomes are generally not the focus of oncologists
when managing cancer treatment regimens.

Table 11 presents 2SLS and OLS estimates from our main specification, examining
the effect of subspecialist access on binary indicators for acute myocardial infarction, hip
fracture, and stroke diagnoses using inpatient claims. Outcomes are measured separately
for the first and second years following chemotherapy initiation. Panel A shows that the
2SLS estimates reveal no statistically significant relationship between subspecialist access
and any of the placebo outcomes. Panel B reports OLS estimates, which—despite some
statistical significance—indicate precisely estimated effects close to zero, suggesting no
meaningful association. These results support the interpretation that subspecialist access
affects cancer-specific outcomes without influencing unrelated health events.25

Taken together, these findings suggest that the overall skill of subspecialists—proxied
by access to a subspecialist of the relevant cancer type—does not influence selected health
outcomes across multiple organ systems unrelated to cancer. This strengthens the inter-
pretation that mortality reductions are driven by oncologist specialization and expertise
in cancer treatment, rather than general physician ability.

7 Conclusion

This paper provides novel causal evidence on the implications of specialization in high-
skill professions. Focusing on medical oncology, we demonstrate that access to sub-
specialized oncologists improves medium- and long-term survival and reduces episode-
level spending. Using quasi-exogenous variation in differential distance to subspecialists
versus general oncologists, we estimate that access to a cancer-type–matched subspe-
cialist reduces three-year mortality by 8.6% relative to the mean, without affecting non-
cancer-related health outcomes—highlighting the value of specialized clinical expertise
beyond general physician skill. We also find that subspecialist access lowers chemother-
apy episode spending by approximately $1,250, a 3.5% reduction relative to the mean.

Our findings are robust to a range of model specifications and control variables, and
we provide additional support for the validity of our instrument through falsification
tests. While subspecialists initiate chemotherapy slightly earlier, we find no evidence
that they selectively treat patients with lower baseline mortality risk, reinforcing the ex-
ogeneity of our identification strategy. Mechanistically, we document that patients with
subspecialist access are significantly more likely to enroll in clinical trials—especially

25Using alternative definitions based on chronic condition indicators for AMI, hip fracture, and stroke
yields similarly null results.
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those relevant to their cancer type—and receive chemotherapy regimens composed of
newer drugs. We also find suggestive evidence of more intensive end-of-life care, re-
flected in lower hospice use. Importantly, we do not observe increased fragmentation of
care, as measured by provider diversity or visit patterns.

In additional analyses, we show that oncologists with a deeper focus on specific can-
cer types—as measured by Herfindahl-Hirschman Indices (HHI)—achieve better mortal-
ity outcomes, reinforcing the returns to deep clinical focus. At the same time, we find
no impact of subspecialist access on unrelated health outcomes such as hip fractures,
strokes, or myocardial infarctions, further underscoring the domain-specific nature of
their effects.

Despite the benefits of subspecialization, our findings raise important concerns about
equitable access subspecilist oncologists. Subspecialists are disproportionately located in
higher-income and urban areas, limiting access for rural and underserved populations.
This geographic concentration highlights the need to consider how healthcare systems
can structure access to specialized expertise while ensuring equity. Overall, our study
contributes to broader discussions in economics and health policy on specialization, la-
bor markets, and productivity, offering new empirical evidence on the returns to deep
expertise in complex professional services.
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Figure 1: Guideline Page Counts by Cancer Category and Year, 2002 - 2020

Note: This figures shows the number of pages in clinical guidelines provided by the National Comprehen-
sive Cancer Network (NCCN). The guideline page count was separated by the main cancer categories in
our sample. Guideline page counts were obtained from Lozinski (2024)
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Figure 2: Utilization of Subspecialized Oncologists by Hospital Referral Region

Note: This figure shows the geographic distribution of chemotherapy episodes by Hospital Referral Re-
gion (HRR) for the years 2008 and 2020. Each bubble is positioned at the centroid of the largest polygon
within the HRR (based on the beneficiaries location). Bubble size reflects the total number of chemother-
apy episodes in the HRR, while bubble color indicates the share of episodes managed by subspecialized
oncologists of the relevant cancer type. State borders are included for geographic reference. Due to data
output restrictions, we have omitted HRRs with less than eleven chemotherapy episodes managed by sub-
specialized oncologists.
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Figure 3: First Stage Relationship by Year

Note: The figure displays a binned scatter plot of the transformed differential distance instrument (x-axis)
against measures of access to subspecialized oncologists (y-axis). Different colors represent distinct years,
with linear best-fit lines plotted separately for each year. Panel A plots the share of episodes with any
office visit with a subspecialized oncologist of the relevant cancer type per bin. Panel B plots the share of
episodes where the care coordinating oncologist is a subspecialist of the relevant cancer type.
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Figure 4: Variation in Differential Distance across Hospital Service Areas (HSA)

Note: The figure displays the within-HSA standard deviation of our residualized instrumental variable. To
construct this measure, we first regress the instrument on cancer type-by-year and ZCTA fixed effects. We
then compute the average residual by HSA and year, and calculate the standard deviation of these HSA-
level means over time. We have to rely on HSAs for this instead of ZCTAs due to file output restrictions.
The maps illustrate geographic variation in this measure across selected metropolitan areas. Panels A and
B highlight regions with high, Panels C and D show areas with moderate, and Panels E and F depict areas
with low variation. HSAs outlined in yellow represent the core of the respective metropolitan area (e.g.
Manhattan for the New York City metropolitan area).
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Figure 5: Instrument Balance across Beneficiary Characteristics

Note: This figure displays coefficients from separate regressions of the instrument on the beneficiary char-
acteristics listed on the y-axis. Each point represents a distinct regression. Solid purple dots show unad-
justed associations without controls or fixed effects. Hollow orange dots include our full set of ZIP Code
Tabulation Area (ZCTA) controls, ZCTA fixed effects, and cancer type-by-year fixed effects. Confidence
intervals are based on heteroskedasticity-robust standard errors in unadjusted regressions, and ZCTA-
clustered standard errors in the adjusted specifications.
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Figure 6: Effect of Subspecialist Access on Mortality

Note: The figure shows the mortality effect of access to a subspecialized oncologists of the relevant cancer
type estimated using 2SLS. Each point is estimated using a separate regression. The x-axis represents
different mortality measures in quarterly intervals (90-days). The y-axis represents the respective 2SLS
estimates including 95% confidence intervals which are constructed using standard errors clustered at the
ZCTA level. We used the same sample of all chemotherapy episodes from 2008 to 2017 for estimation.
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Figure 7: Share of Episodes with Cancer Trial Enrollment by Trial Type and Oncologist
Subspecialization

Note: The figure displays the share of chemotherapy episodes between 2014 and 2020 where the beneficiary
had any claim with a NCT number reported in the same year as the chemotherapy was initiated. The solid
orange line shows the respective share for episodes coordinated by subspecialized oncologists, while the
purple dashed line shows the share of episodes for general oncologists. Panel A reports the share for any
cancer trial, Panel B for cancer trials concordant to a beneficiaries cancer type, Panel C the share for cancer
trials with unspecified cancers and Panel D shows the share for non-cancer trials.
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Tables

Table 1: Summary Statistics of Main Sample

Variable Mean SD Min. Max.

Panel A: Cancer Characteristics

Breast Cancer 0.448 0.497 0.000 1.000
GI Cancer 0.102 0.303 0.000 1.000
Leukemia + Lymphoma 0.216 0.412 0.000 1.000
Prostate + Genitourinary Cancer 0.13 0.336 0.000 1.000
Thoracic Cancer 0.103 0.304 0.000 1.000

Panel B: Demographics

Bene Age 75.977 6.545 67.000 115.000
Female Bene 0.652 0.476 0.000 1.000
Black Bene 0.080 0.271 0.000 1.000
Hispanic Bene 0.011 0.105 0.000 1.000
Asian Bene 0.015 0.121 0.000 1.000
Other non-White Race Bene 0.015 0.122 0.000 1.000

Panel C: Chronic Conditions

Alzheimer’s Disease 0.025 0.156 0.000 1.000
Alzheimer’s Disease or Dementia 0.086 0.280 0.000 1.000
Acute Myocardial Infarction (Heart Attack) 0.011 0.104 0.000 1.000
Anemia 0.496 0.500 0.000 1.000
Asthma 0.062 0.241 0.000 1.000
Atrial Fibrillation 0.119 0.324 0.000 1.000
Breast Cancer 0.473 0.499 0.000 1.000
Colorectal Cancer 0.078 0.268 0.000 1.000
Endometrial Cancer 0.007 0.083 0.000 1.000
Lung Cancer 0.127 0.333 0.000 1.000
Prostate Cancer 0.141 0.348 0.000 1.000
Cataracts 0.231 0.421 0.000 1.000
Congestive Heart Failure 0.195 0.396 0.000 1.000
Chronic Kidney Disease 0.305 0.461 0.000 1.000
Chronic Obstructive Pulmonary Disease (COPD) 0.182 0.386 0.000 1.000
Depression 0.187 0.390 0.000 1.000
Diabetes 0.308 0.462 0.000 1.000
Hyperplasia 0.081 0.273 0.000 1.000
Glaucoma 0.116 0.32 0.000 1.000
Hyperlipidemia (High Cholesterol) 0.554 0.497 0.000 1.000
Hypertension (High Blood Pressure) 0.706 0.456 0.000 1.000
Hypothyroidism 0.199 0.399 0.000 1.000
Ischemic Heart Disease 0.364 0.481 0.000 1.000
Osteoporosis 0.129 0.336 0.000 1.000
Rheumatoid Arthritis/Osteoarthritis 0.391 0.488 0.000 1.000
Stroke (TIA) 0.042 0.201 0.000 1.000

Panel C: ZCTA Characteristics

Distance Closest Oncologist 3.649 3.706 0.000 17.287
Mean Age 71.729 2.148 46.333 97.504
Share FFS 0.712 0.104 0.000 1.000
Share Full Dual 0.103 0.081 0.000 0.943
Share Disabled 0.142 0.071 0.000 0.918
Share Male 0.451 0.029 0.000 1.000
Share Black 0.097 0.167 0.000 1.000
Share Hispanic 0.019 0.044 0.000 0.680
Share Asian 0.02 0.045 0.000 1.000
Share Other non-White Race 0.020 0.029 0.000 1.000
Total Nr. Benes 4,904.062 3,477.523 1.000 43,028.000
Median Household Income 64,139.115 27,461.29 2,499.000 25,0001.000
Total Nr. Providers 109.696 198.904 0.000 7,211.000
Nr. Primary Care Providers 33.329 65.425 0.000 2,147.000
Nr. Mental Health Providers 10.487 20.801 0.000 338.000
Distance Closest Primary Care Provider 0.484 1.291 0.000 16.761

Notes: The table provides summary statistics our main sample of chemotherapy
episodes.
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Table 2: First Stage Estimates

Any Office Visit Subspecialist Treatement Subspecialist

sinh−1(DD) -0.026∗∗∗ -0.018∗∗∗

(0.001) (0.001)

ZCTA FE Yes Yes
Cancer-Year FE Yes Yes

Observations 6,144,379 6,144,379
R2 0.176 0.183
Mean Dep. Var. 0.206 0.163
F-test (1st stage) 22,095.726 13,890.040

Notes: The table provides estimates of the first stage relationship between the inverse hy-
perbolic sine of the differential distance between a subspecialized oncologist of the relevant
cancer type and a general oncologist. Column 1 provides estimates for our main access
measure, while column 2 provides estimates of the relationship between the instrument
and having a care coordinating oncologist who is a subspecialist of the relevant cancer
type. Standard errors are clustered at the ZCTA level. Signif. Codes: ***: 0.01, **: 0.05, *:
0.1.
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Table 3: Mortality Effects of Access to Subspecialized Oncologist - Constant
Sample

180-day 360-day 720-day 1080-day

Panel A: 2SLS

Any Office Visit Subs. -0.002 -0.020∗∗ -0.037∗∗∗ -0.034∗∗

(0.006) (0.009) (0.012) (0.013)

R2 0.118 0.218 0.292 0.317
F-test (1st stage) 13,911 13,911 13,911 13,911
Observations 4,456,173 4,456,173 4,456,173 4,456,173
Mean Dep. Var. 0.077 0.173 0.300 0.385

Panel B: OLS

Any Office Visit Subs. -0.004∗∗∗ 0.006∗∗∗ 0.014∗∗∗ 0.014∗∗∗

(0.000) (0.001) (0.001) (0.001)

R2 0.118 0.218 0.293 0.319
Observations 4,456,173 4,456,173 4,456,173 4,456,173
Mean Dep. Var. 0.077 0.173 0.300 0.385

Notes: The table provides estimates on the effect of access to subspecialized oncologists
on various outcomes of mortality for the years 2008 to 2017 of our main sample. Due
to the required look forward window when constructing measures of mortality we have
fixed the sample to be constant for all measures of mortality. Panel A shows two-stage
least squares estimates and Panel B presents the corresponding OLS estimates. All models
include demographic, ZCTA level and chronic conditions controls as well fixed effects for
the beneficiaries’ ZCTA and cancer type by year fixed effects. Standard errors are clustered
at the ZCTA level. Signif. Codes: ***: 0.01, **: 0.05, *: 0.1.
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Table 4: Access to Subspecialized Oncologist and Spending

Total Part A Part B Part D

Panel A: 2SLS

Any Office Visit Subs. -1,246.52 415.57 -1,341.75∗∗ -320.33
(876.40) (294.27) (675.64) (572.80)

R2 0.358 0.164 0.243 0.325
F-test (1st stage) 19,061 19,061 19,061 19,061
Observations 6,144,329 6,144,329 6,144,329 6,144,329
Mean Dep. Var. 35,354.11 5,532.10 21,619.46 8,204.55

Panel B: OLS

Any Office Visit Subs. 4,715.852∗∗∗ 1,289.665∗∗∗ 2,652.099∗∗∗ 774.088∗∗∗

(67.132) (21.552) (50.340) (42.861)

R2 0.361 0.165 0.246 0.326
Observations 6,144,329 6,144,329 6,144,329 6,144,329
Mean Dep. Var. 35,354.11 5,532.10 21,619.46 8,204.55

Notes: The table provides estimates on the effect of access to subspecialized oncologists on different
measures of spending for chemotherapy episodes in our main sample. Column 1 provides estimates
for total spending, column 2 Part A spending, column Part B spending and column 4 Part D spend-
ing. Panel A shows two-stage least squares estimates and Panel B presents the corresponding OLS
estimates. All models include demographic, ZCTA level and chronic conditions controls as well fixed
effects for the beneficiaries’ ZCTA and cancer type by year fixed effects. Standard errors are clustered
at the ZCTA level. Signif. Codes: ***: 0.01, **: 0.05, *: 0.1.
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Table 5: Differential Distance IV Complier Characteristics

Variable Share Among All Share Among Compliers Total Obs. Conditional Obs.

Panel A: Demographics

Age 67-69 18.289 17.469 6,144,379 1,123,773
Age 70-74 29.478 28.86 6,144,379 1,811,236
Age 75-79 23.868 23.753 6,144,379 1,466,516
Age 80-84 16.316 17.186 6,144,379 1,002,531
Age 85+ 12.049 12.658 6,144,379 740,323
Asian Bene 1.484 1.539 6,144,379 91,170
Female Bene 65.172 56.436 6,144,379 4,004,390
Black Bene 7.958 8.669 6,144,379 488,948
Hispanic Bene 1.118 0.824 6,144,379 68,680
Other non-White Race Bene 1.508 1.364 6,144,379 92,640

Panel B: Chronic Conditions Indicators

Alzheimer’s Disease 2.507 2.191 6,144,379 154,055
Alzheimer’s Disease or Dementia 8.570 7.828 6,144,379 526,593
Acute Myocardial Infarction (Heart Attack) 1.088 0.995 6,144,379 66,880
Anemia 49.609 45.304 6,144,379 3,048,179
Asthma 6.211 6.094 6,144,379 381,642
Atrial Fibrillation 11.925 11.848 6,144,379 732,715
Breast Cancer 47.275 34.326 6,144,379 2,904,775
Colorectal Cancer 7.783 5.599 6,144,379 478,200
Endometrial Cancer 0.687 0.684 6,144,379 42,216
Lung Cancer 12.698 9.114 6,144,379 780,191
Prostate Cancer 14.110 16.651 6,144,379 866,975
Cataracts 23.095 23.935 6,144,379 1,419,052
Congestive Heart Failure 19.525 17.934 6,144,379 1,199,697
Chronic Kidney Disease 30.530 30.472 6,144,379 1,875,872
Chronic Obstructive Pulmonary Disease (COPD) 18.179 16.981 6,144,379 1,116,957
Depression 18.660 17.922 6,144,379 1,146,528
Diabetes 30.850 29.437 6,144,379 1,895,527
Glaucoma 11.567 12.783 6,144,379 710,690
Hyperlipidemia (High Cholesterol) 55.433 56.433 6,144,379 3,405,997
Hyperplasia 8.105 7.394 6,144,379 498,023
Hypertension (High Blood Pressure) 70.57 70.622 6,144,379 4,336,103
Hypothyroidism 19.866 19.334 6,144,379 1,220,625
Ischemic Heart Disease 36.418 35.488 6,144,379 2,237,663
Osteoporosis 12.949 12.559 6,144,379 795,613
Rheumatoid Arthritis/Osteoarthritis 39.051 38.632 6,144,379 2,399,464
Stroke or Transient Ischemic Attack (TIA) 4.225 4.089 6,144,379 259,615

Notes: The table presents characteristics of the differential distance compliers, in comparison to the overall sample
of chemotherapy beneficiaries. For categorical variables the mean in each bin is represented.
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Table 6: Clinical Trial Enrollment and Access to Subspecialized Oncologists

Any Cancer Concordant Cancer Unspecified Cancer Non Cancer

Panel A: 2SLS

Any Office Visit Subs. 0.022∗∗∗ 0.018∗∗ 0.000 0.001
(0.005) (0.005) (0.000) (0.001)

R2 0.052 0.048 0.016 0.015
F-test (1st stage) 10,984 10,984 10,984 10,984
Observations 3,737,072 3,737,072 3,737,072 3,737,072
Mean Dep. Var. 0.019 0.016 0.001 0.001

Panel B: OLS

Any Office Visit Subs. 0.044∗∗∗ 0.038∗∗∗ 0.002∗∗∗ 0.001∗∗∗

(0.000) (0.000) (0.000) (0.000)

R2 0.056 0.051 0.016 0.015
Observations 3,737,072 3,737,072 3,737,072 3,737,072
Mean Dep. Var. 0.019 0.016 0.001 0.001

Notes: The table provides estimates of the effect of access to a subspecialized oncologist of the relevant cancer type on measures of clinical
trial enrollment. Estimates for different outcomes are presented in different columns. Column 1 presents results referring to any enrollment
in a cancer trial, column 2 any enrollment in a cancer trial of the concordant cancer type, column 3 any enrollment in a cancer trial where
cancer types are not clearly specified and column 4 shows results for non cancer trials. Panel A presents 2SLS estimates and Panel B presents
results for simple OLS estimates. All models include demographic, ZCTA level and chronic conditions controls as well fixed effects for the
beneficiaries’ ZCTA and cancer type by year fixed effects. Standard errors are clustered at the ZCTA level. Signif. Codes: ***: 0.01, **: 0.05, *:
0.1.
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Table 7: Subspecialist Access and Age of Cancer Drugs

Combined Part B Part D

Panel A: 2SLS

Any Office Visit Subs. -0.555∗ -1.114∗ -0.670
(0.324) (0.594) (0.436)

R2 0.203 0.187 0.260
F-test (1st stage) 19,043 12,991 10,213
Observations 6,130,968 4,253,503 3,819,076
Mean Dep. Var. 24.795 30.148 23.641

Panel B: OLS

Any Office Visit Subs. -0.469∗∗∗ -0.818∗∗∗ -0.379∗∗∗

(0.022) (0.036) (0.027)

R2 0.203 0.187 0.26
Observations 6,130,968 4,253,503 3,819,076
Mean Dep. Var. 24.795 30.148 23.641

Notes: The table provides estimates on the effect of access to subspecialized oncol-
ogists on the average age of cancer drugs used during the year of chemotherapy
initiation. Column 1 indicates the effect on the average age of Part B and Part
D drugs combined, column 2 provides estimates of the effect on the average age
of Part B drugs and column 3 provides estimates for the effect on the average
age of Part D drugs. Panel A shows two-stage least squares estimates and Panel
B presents the corresponding OLS estimates. All models include demographic,
ZCTA level and chronic conditions controls as well fixed effects for the beneficia-
ries’ ZCTA and cancer type by year fixed effects. Standard errors are clustered at
the ZCTA level. Signif. Codes: ***: 0.01, **: 0.05, *: 0.1.
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Table 8: Subspecialist Access and End of Life Care (30 Days before Death)

Any ER Any ICU Any Hospice (30-3) Any Hospice (3-0)

Panel A: 2SLS

Any Office Visit Subs. 0.004 0.001 -0.009∗∗ -0.002
(0.004) (0.003) (0.003) (0.002)

R2 0.083 0.055 0.051 0.027
F-test (1st stage) 19,061 19,061 19,061 19,061
Observations 6,144,379 6,144,379 6,144,379 6,144,379
Mean Dep. Var. 0.050 0.026 0.031 0.014

Panel B: OLS

Any Office Visit Subs. -0.003∗∗∗ -0.001∗∗∗ 0.000∗∗ 0.000∗∗∗

(0.000) (0.000) (0.000) (0.000)

R2 0.083 0.166 0.051 0.027
Observations 6,144,379 6,144,379 6,144,379 6,144,379
Mean Dep. Var. 0.050 0.026 0.031 0.014

Notes: The table provides estimates on the effect of access to subspecialized oncologists on different
measures of end of life care within the last 30 days of a beneficiaries life. Column 1 shows the effect on
the probability of emergency room admission, column 2 on the effect of intensive care unit admission,
column 3 shows the effect on whether a beneficiary has had a hospice claim within the last 30 to 3
days before death (30-3) and column 4 whether a beneficiary had any claim within the last 3 days
of life (3-0). All outcomes additionally include the condition that a person died during an ongoing
chemotherapy episode or within 30 days after. Panel A shows two-stage least squares estimates and
Panel B presents the corresponding OLS estimates. All models include demographic, ZCTA level and
chronic conditions controls as well fixed effects for the beneficiaries’ ZCTA and cancer type by year
fixed effects. Standard errors are clustered at the ZCTA level. Signif. Codes: ***: 0.01, **: 0.05, *: 0.1.
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Table 9: Access to Subspecialized Oncologist and Provider Mix

Visits Unique Providers Unique Specialties

Panel A: 2SLS

Any Office Visit Subs. 0.238 -0.198∗∗∗ -0.017
(0.203) (0.064) (0.050)

R2 0.266 0.188 0.187
F-test (1st stage) 19,061 19,061 19,061
Observations 6,144,379 6,144,379 6,144,379
Mean Dep. Var. 10.252 4.415 3.942

Panel B: OLS

Any Office Visit Subs. 0.757∗∗∗ 0.566∗∗∗ 0.354∗∗∗

(0.014) (0.005) (0.003)

R2 0.266 0.201 0.192
Observations 6,144,379 6,144,379 6,144,379
Mean Dep. Var. 10.252 4.415 3.942

Notes: The table provides estimates on the effect of access to subspecialized oncolo-
gists on different measures relevant for the beneficiary provider mix. All outcomes
are defined at the episode level. Column 1 provides estimates for the effect on the
number of E&M office visits, column 2 the number of unique provider NPIs, column
3 the number of unique specialties and column 4 the effect on the standard deviation
of the time between office visits. Panel A shows two-stage least squares estimates and
Panel B presents the corresponding OLS estimates. All models include demographic,
ZCTA level and chronic conditions controls as well fixed effects for the beneficiaries’
ZCTA and cancer type by year fixed effects. Standard errors are clustered at the ZCTA
level. Signif. Codes: ***: 0.01, **: 0.05, *: 0.1.
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Table 10: Mortality Effects of Oncologist Specialization

180-day 1-Year 2-Year 3-Year

Panel A: 2SLS

HHI -0.006 -0.065∗∗ -0.114∗∗∗ -0.103∗∗

(0.020) (0.029) (0.038) (0.042)

R2 0.118 0.219 0.293 0.319
F-test (1st stage) 4,775 4,775 4,775 4,775
Observations 4,456,173 4,456,173 4,456,173 4,456,173
Mean Dep. Var. 0.077 0.175 0.303 0.388

Panel B: OLS

HHI -0.008∗∗∗ -0.015∗∗∗ -0.029∗∗∗ -0.039∗∗∗

(0.001) (0.001) (0.001) (0.002)

R2 0.118 0.220 0.294 0.319
Observations 4,456,173 4,456,173 4,456,173 4,456,173
Mean Dep. Var. 0.077 0.175 0.303 0.388

Notes: The table provides estimates on the effect of oncologist level cancer type
HHIs on various outcomes of mortality for the years 2008 to 2017 of our main sam-
ple. Panel A shows two-stage least squares estimates and Panel B presents the corre-
sponding OLS estimates. All models include demographic, ZCTA level and chronic
conditions controls as well fixed effects for the beneficiaries’ ZCTA and cancer type
by year fixed effects. Standard errors are clustered at the ZCTA level. Signif. Codes:
***: 0.01, **: 0.05, *: 0.1.
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Table 11: Access to Subspecialists and Placebo Outcomes

Year + 1 Year + 2

AMI Hip Fracture Stroke AMI Hip Fracture Stroke

Panel A: 2SLS

Any Office Visit Subs. 0.002 -0.002 0.002 0.000 -0.002 0.000
(0.001) (0.002) (0.002) (0.001) (0.001) (0.001)

R2 0.016 0.011 0.027 0.012 0.009 0.016
F-test (1st stage) 19,061 19,061 19,061 19,061 19,061 19,061
Observations 6,144,379 6,144,379 6,144,379 6,144,379 6,144,379 6,144,379
Mean Dep. Var. 0.003 0.004 0.004 0.002 0.003 0.003

Panel B: OLS

Any Office Visit Subs. 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

R2 0.017 0.011 0.028 0.012 0.009 0.016
Observations 6,144,379 6,144,379 6,144,379 6,144,379 6,144,379 6,144,379
Mean Dep. Var. 0.003 0.004 0.004 0.002 0.003 0.003

Notes: The table provides estimates on the effect of access to subspecialized oncologists of the relevant cancer type
on binary indicators for having any diagnosis for acute myocardial infarction (AMI), hip fracture and stroke in the
first year (Year + 1) and second year (Year + 2) after chemotherapy initiation in the Part A Inpatient file. Panel A
shows two-stage least squares estimates and Panel B presents the corresponding OLS estimates. All models include
demographic, ZCTA level and chronic conditions controls as well fixed effects for the beneficiaries’ ZCTA and cancer
type by year fixed effects. Standard errors are clustered at the ZCTA level. Signif. Codes: ***: 0.01, **: 0.05, *: 0.1.
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8 Appendix

A Spending Definitions

We construct detailed measures of healthcare spending using individual claims from
Medicare Parts A, B, and D. This includes inpatient, hospice, home health, and skilled
nursing facility (SNF) claims from Part A; carrier, outpatient, and durable medical equip-
ment (DME) claims from Part B; and prescription drug claims from Part D. For each
claims file, we identify relevant records and associated payment variables, classifying
payments into three categories: (1) Medicare payments, (2) beneficiary out-of-pocket
payments, and (3) payments by non-Medicare primary payers. These spending amounts
are aggregated by date at the beneficiary level to allow for analysis over defined time
periods.

Episode-level spending is defined as the total spending from the date of chemother-
apy initiation through 180 days post-initiation, or until the date of death if the beneficiary
dies within that period. For each claims file, we select relevant variables and exclude
records (at the claim or line level) that do not contribute to healthcare spending. Spend-
ing is calculated separately for each file and disaggregated by payer type (Medicare,
beneficiary, or other primary payer). A full overview of variable definitions and selection
criteria is provided in Table A2. In order to better understand drivers of spending we
also constructed episode level spending of different RBCS subcategories (CMS, 2024).

Table A1: Spending Measures Comparison with Prior Literature

Keating et al. (2021) Main Sample

Overall 30,946 37,630
Part A 5,966 5,502
Part B 18,503 22,009
Part D 7,794 10,200

Notes: The table provides the average spending for chemotherapy episodes as
defined by the Oncology Care Model (OCM) in USD. Column 1 provides spend-
ing measures obtained from Table 2 Keating et al. (2021), where we averaged the
OCM intervention group baseline and intervention columns. In column 2 we
provide spending per chemotherapy episode from our main sample for the years
2014 to 2019 corresponding to the time period used in the comparison article.

We benchmark our spending measures against those reported in Keating et al. (2021),
who evaluate spending in Oncology Care Model (OCM) participating practices com-
pared to propensity-matched non-OCM practices. While their analysis covers a shorter
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time period (2014–2019), their definition of chemotherapy episodes closely aligns with
ours. Due to our focus on the largest cancer types and the application of additional
sample selection criteria, exact comparability is not expected. However, our spending
estimates closely track those reported in Keating et al. (2021), supporting the consistency
of our measures. In Table A1, we compare average episode-level spending in our sample
between 2014 and 2019 to the OCM benchmarks presented in Table 2 of Keating et al.
(2021). We observe slightly higher spending in Medicare Part B and Part D, which we
attribute to the inclusion of both beneficiary out-of-pocket payments and non-Medicare
primary payer spending in our estimates, as well as differences in the beneficiary popu-
lations included.

Next, we provide an overview of episode level spending for all episodes in our main
sample. In Figure A1 we show average spending per chemotherapy episode by Medicare
Parts A, B and D from 2008 to 2020 in 1,000 USD. Over time spending per episode
significantly increases, which is particularly driven by higher Part B and Part D spending.
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Figure A1: Spending per Episode by Medicare Part and Year

Note: The figure presents average spending per chemotherapy episode separately for Medicare Part A, B
and D for the years 2008 to 2020.

Figure A2 shows the evolving share of total spending accounted for by each part
of Medicare over time. In 2008—just two years after the introduction of Medicare Part
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D—Part D spending comprised only 9% of total episode-level spending, compared to
69% for Part B and 22% for Part A. By 2020, the share of Part D spending had in-
creased substantially to 32%, while the share of Part B spending declined to 56%, and
Part A spending fell to 12%. This shift reflects the growing importance of oral and self-
administered drugs in cancer treatment and the evolving structure of Medicare-financed
oncology care.
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Figure A2: Share of Total Spending by Medicare Part over Time

Note: The figure presents the share of total spending by year by Medicare Part A, B and D for the years
2008, 2012, 2016 and 2020 and includes relevant episodes from our main sample.
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Table A2: Variable List and Selection Criteria for Spending Definitions

Label Variable Payer Type Exclude

Carrier
Carrier Claim Payment Denial Code CARR_CLM_PMT_DNL_CD 0 or D through Y
Line Processing Indicator Code LINE_PRCSG_IND_CD NOT A, R or S
Line NCH Medicare Payment Amt. LINE_NCH_PMT_AMT Medicare
Line Bene. Part B Deductible Amt. LINE_BENE_PTB_DDCTBL_AMT Bene.
Line Bene. Coinsurance Amt. LINE_COINSRNC_AMT Bene.
Line Bene. Part B Deductible Amt. LINE_BENE_PTB_DDCTBL_AMT Bene.
Line Primary Payer (if not Medicare) Paid Amt. LINE_BENE_PRMRY_PYR_PD_AMT Primary Payer
Line Last Expense Date LINE_LAST_EXPNS_DT

Durable Medical Equipment (DME)

Carrier Claim Payment Denial Code CARR_CLM_PMT_DNL_CD 0 or D through Y
Line Processing Indicator Code LINE_PRCSG_IND_CD NOT A, R or S
Line NCH Medicare Payment Amt. LINE_NCH_PMT_AMT Medicare
Line Bene. Part B Deductible Amt. LINE_BENE_PTB_DDCTBL_AMT Bene.
Line Bene. Coinsurance Amt. LINE_COINSRNC_AMT Bene.
Line Primary Payer (if not Medicare) Paid Amt. LINE_BENE_PRMRY_PYR_PD_AMT Primary Payer
Line Last Expense Date LINE_LAST_EXPNS_DT

Home Health
Claim Medicare Non-Payment Reason Code CLM_MDCR_NON_PMT_RSN_CD non-blank
Claim Facility Type Code CLM_FAC_TYPE_CD 4, 5
Claim (Medicare) Payment Amt. CLM_PMT_AMT Medicare
Revenue Center Non-Covered Charge Amt. REV_CNTR_NCVRD_CHRG_AMT Bene.
NCH Primary Payer (if not Medicare) Claim Paid Amt. NCH_PRMRY_PYR_CLM_PD_AMT Primary Payer
Claim Through Date CLM_THRU_DT

Hospice

Claim Medicare Non-Payment Reason Code CLM_MDCR_NON_PMT_RSN_CD non-blank
Claim (Medicare) Payment Amt. CLM_PMT_AMT Medicare
Revenue Center Non-Covered Charge Amt. REV_CNTR_NCVRD_CHRG_AMT Bene.
NCH Primary Payer (if not Medicare) Claim Paid Amt. NCH_PRMRY_PYR_CLM_PD_AMT Primary Payer
Claim Through Date CLM_THRU_DT

Inpatient

Claim Medicare Non-Payment Reason Code CLM_MDCR_NON_PMT_RSN_CD non-blank
Claim (Medicare) Payment Amt. CLM_PMT_AMT Medicare
Claim PPS Capital Disproportionate Share Amt. CLM_PPS_CPTL_DSPRPRTNT_SHR_AMT Medicare
Claim PPS Capital Indirect Medical Education (IME) Amt. CLM_PPS_CPTL_IME_AMT Medicare
Operating Indirect Medical Education (IME) Amt. IME_OP_CLM_VAL_AMT Medicare
Operating Disproportionate Share (DSH) Amt. DSH_OP_CLM_VAL_AMT Medicare
Revenue Center Non-Covered Charge Amt. REV_CNTR_NCVRD_CHRG_AMT Bene.
NCH Bene. Inpatient (or other Part A) Deductible Amt. NCH_BENE_IP_DDCTBL_AMT Bene.
NCH Primary Payer (if not Medicare) Claim Paid Amt. NCH_PRMRY_PYR_CLM_PD_AMT Primary Payer
Claim Through Date CLM_THRU_DT

Outpatient

Claim Medicare Non-Payment Reason Code CLM_MDCR_NON_PMT_RSN_CD non-blank
Claim Facility Type Code CLM_FAC_TYPE_CD 4, 5
Claim (Medicare) Payment Amt. CLM_PMT_AMT Medicare
NCH Bene. Part B Deductible Amt. NCH_BENE_PTB_DDCTBL_AMT Bene.
NCH Bene. Part B Coinsurance Amt. NCH_BENE_PTB_COINSRNC_AMT Bene.
Revenue Center Non-Covered Charge Amt. REV_CNTR_NCVRD_CHRG_AMT Bene.
NCH Primary Payer (if not Medicare) Claim Paid Amt. NCH_PRMRY_PYR_CLM_PD_AMT Primary Payer
Claim Through Date CLM_THRU_DT

Skilled Nursing Facility (SNF)

Claim Medicare Non-Payment Reason Code CLM_MDCR_NON_PMT_RSN_CD non-blank
Claim (Medicare) Payment Amt. CLM_PMT_AMT Medicare
Revenue Center Non-Covered Charge Amt. REV_CNTR_NCVRD_CHRG_AMT Bene.
NCH Primary Payer (if not Medicare) Claim Paid Amt. NCH_PRMRY_PYR_CLM_PD_AMT Primary Payer
Claim Through Date CLM_THRU_DT

Part D
Amt. paid for by Part D low income subsidy LICS_AMT Medicare
Amt. Paid by Patient PTNT_PAY_AMT Bene.
Other True Out-of-Pocket (TrOOP) Amt. OTHR_TROOP_AMT Primary Payer
Reduction in patient liability (PLRO) PLRO_AMT Primary Payer
Amt. paid by Part D plan for the PDE CVRD_D_PLAN_PD_AMT Primary Payer
RX Service Date SRVC_DT

Notes: The table provides an overview of the variables and criteria used to construct spending measures for our main analysis from
individual claims. The first column describes the variable, the second column provides the variable label as outlined in the Chronic
Condition Warehouse (CCW) codebooks for fee-for-service claims and Part D events. The third column indicates which payer is
attributed the respective payment variable and column four indicates exclusion criteria for claim and lines for relevant variables.
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B Clinical Trial Classification

To classify clinical trials obtained from ClinicalTrials.gov, we utilized OpenAI’s GPT-
4 API. The model was prompted with the primary condition listed for each trial and
tasked with assigning it to one of several predefined cancer categories. The classification
process followed these steps:

First, we linked the ClinicalTrials.gov dataset to a list of clinical trial identifiers ob-
served in Medicare claims, obtained from the Virtual Research Data Center (VRDC). This
allowed us to subset the data, retaining only trials that were present in Medicare claims.
We then extracted key trial characteristics, including study type, study status, conditions,
interventions, and trial identifiers, for further processing.

Since some trials list multiple conditions, we focused on the primary condition
recorded in the dataset to ensure consistency in classification. We then defined a set of
predefined cancer categories: breast cancer, GI cancer, leukemia/lymphoma, skin cancer,
head/neck cancer, prostate/genitourinary cancer, thoracic cancer, gynecologic cancer,
other cancer, general cancer, and no cancer. With the exception of the last two categories,
these classifications align with the definitions used in Table D2.

The general cancer category was used to classify trials that were clearly cancer-related
but did not fall into a specific cancer type. For example, some trials listed broad terms
such as “neoplasm” or “malignancies” as their primary condition. While these terms
indicate a cancer-related trial, they do not provide enough specificity to assign the trial
to a distinct cancer category. The no cancer category was used for trials that were entirely
unrelated to cancer.

For each classification request, we set the model’s temperature to zero to ensure de-
terministic outputs and limited responses to a maximum of 20 tokens. The API was
prompted with the following format:

Label as one of the following: breast cancer, GI cancer, leukemia/lymphoma, skin cancer,
head/neck cancer, prostate/genitourinary cancer, thoracic cancer, gynecologic cancer, other cancer,

general cancer, no cancer – for medical condition: non-small cell lung cancer.

We manually reviewed a subset of the clinical trials and obtained correct classification
for more than 90% of our requests. In the final step, we merged the classification results
back into the clinical trial dataset, ensuring each trial was assigned a cancer category for
further analysis.

The final share of classified trials which have a corresponding clinical trial number
both among beneficiaries in our chemotherapy sample and in clinical trials is presented
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in Figure B1. Of the 11,049 classified trials relevant for our sample 24 percent are related
to leukemia and lymphoma, 15 percent are not related to cancer, 12 percent are related
to other cancers (cancers not covered by our broader categories).
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Figure B1: Share of Clinical Trials by Cancer Classification

Note: This figure presents the share of cancer trials within different categories as classified using GTP-
4 in combination with data from clinicaltrials.gov. In total there are 11,049 classified trials, which are
both linked to a beneficiary in our sample during the year their chemotherapy was initiated and where
information is available via clinicaltrials.gov
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C Selection into Chemotherapy

Our main analysis focuses on beneficiaries who initiate chemotherapy, as defined by the
OCM framework. However, a potential concern is that improved mortality outcomes as-
sociated with subspecialist access could reflect selection into chemotherapy rather than
differences in treatment quality. For instance, subspecialists may be more selective, initi-
ating treatment only for healthier patients, thereby improving observed survival among
those who receive chemotherapy.

To examine this, we construct a new sample capturing the point of initial oncology
consultation. Specifically, we identify all new office visits (HCPCS codes 99202–99205)
with oncologists in our OCM dataset between 2008 and 2020. This restriction ensures
that we can classify oncologists as subspecialists across the full sample. We further
restrict to patients with a cancer diagnosis and no initiation start of a new chemotherapy
episode in the preceding 12 months, retaining only the first qualifying new office visit
per beneficiary. This sample allows us to test whether exposure to a subspecialist at
the consultation stage affects the likelihood of receiving chemotherapy. This leaves us
with a sample of 3,205,399 new office visits of which 15.3% were with a subspecialized
oncologist of the relevant cancer type.26

We follow a similar identification strategy as in our main analysis, but specifically we
estimate the following equation:

Visiti = α + β · DDt(i)z(i) + δXi + τt(i) + γz(i) + ψDt(i)z(i) + εi (4)

for visit i in ZCTA z in year by cancer type t, where DD captures the inverse hyperbolic
sine of the differential distance between a subspecialized oncologist of the relevant can-
cer type and a general oncologist at the ZCTA and year level. The vector Xi includes
beneficiary demographic and chronic conditions, as well as ZCTA level controls which
vary over time. D is a simple distance measure capturing the distance to the nearest
oncologist of any kind, τt(i) is a cancer type by year fixed effect and γz(i) a ZCTA fixed
effect. The dependent variable Visiti is a binary indicator variable equal to one if a ben-
eficiary had the new office visit with a subspecialized oncologist of the relevant cancer
type and zero otherwise.

In a second step, we estimate the effect of initial subspecialist consultation on time to
chemotherapy initiation. We estimate:

26It is important to recognize that the new office visit sample captures a different subset of beneficiaries
than our main chemotherapy sample. As a result, direct comparisons between the two samples should be
interpreted with caution.
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Yi = α + β · V̂isiti + δXi + τt(i) + γz(i) + ψDt(i)z(i) + εi (5)

where Yi is the outcome variable for example a binary indicator equal to one if
chemotherapy was initiated within a specific time windows (e.g. within 30, 60, 90 days
after the initial consultation).

We provide evidence that our instrument satisfies both the relevance and indepen-
dence assumptions in this new office visit sample. Table C1 shows a strong first-stage
relationship between the instrument and the likelihood of having a first new office visit
with a subspecialized oncologist, with the association remaining robust after control-
ling for covariates and fixed effects; the large F-statistic confirms sufficient instrument
strength (Lee et al., 2022). In support of the independence assumption, Figure D7 demon-
strates that the instrument is uncorrelated with observable beneficiary characteristics
once we condition on ZCTA and cancer type-by-year fixed effects.

Table C1: First Stage Estimates Selection into Chemotherapy

New Visit Subspecialist

sinh−1(DD) -0.027∗∗∗

(0.000)

Observations 3,205,399
R2 0.161
Mean Dep. Var. 0.153
F-test (1st stage) 16,961

Notes: The table provides estimates of the first stage relationship between the
inverse hyperbolic sine of the differential distance between a subspecialized on-
cologist of the relevant cancer type and a general oncologist and the outcome of
having a first new office visit with a subspecialist or the relevant cancer type.
All models include demographic, ZCTA level and chronic conditions controls as
well fixed effects for the beneficiaries’ ZCTA and cancer type by year fixed effects.
Standard errors are clustered at the ZCTA level. Signif. Codes: ***: 0.01, **: 0.05,
*: 0.1.

We estimate Equation 5 using binary indicators for chemotherapy initiation within
30 to 360 days after the first new office visit. As shown in Figure C1, beneficiaries ini-
tially seen by a subspecialized oncologist of the relevant cancer type are significantly
more likely to start chemotherapy within 180 days, with the largest effect—3.7 percent-
age points or 12.3% relative to the mean—occurring within 60 days. Differences dissi-
pate after 180 days, suggesting that subspecialists accelerate initiation without affecting
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overall treatment rates. Earlier initiation, however, may reflect a clinically meaningful
improvement in timeliness of care.
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Figure C1: New Subspecialist Office Visit and Time to Chemotherapy Initiation

Note: The figure displays the effect of having a first new office visit with a subspecialized oncologist of
the relevant cancer type on the likelihood of initiating chemotherapy, measured at different time intervals
following the visit. Estimates are derived from separate 2SLS regressions for each binary outcome. The
x-axis indicates whether chemotherapy was initiated within 30, 60 up to 360 days of the initial visit. Panel
A presents raw 2SLS point estimates, while Panel B scales these estimates relative to the mean of each
respective outcome. The y-axis shows the estimated coefficients with 95% confidence intervals, using
standard errors clustered at the ZCTA level. All models control for beneficiary demographics, ZCTA-level
characteristics, and chronic conditions, and include fixed effects for ZCTA and cancer type by year.

Using the sample of first new office visits, we examine whether mortality differs based
on whether the initial consultation was with a subspecialized oncologist. This analysis
tests whether the mortality effects observed in the chemotherapy sample might stem
from earlier selection into care. We assess mortality for all new visits between 2008 and
2017, and separately for individuals who never initiate chemotherapy. As shown in Table
C2, we find no statistically significant differences in mortality up to three years post-
consultation. These null results suggest that subspecialist involvement at the initial visit
does not meaningfully influence survival, reinforcing the view that observed mortality
benefits emerge during or after chemotherapy.
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Table C2: Mortality Effects of New Office Visit with Subspecialist

180-day 360-day 720-day 1080-day

Panel A: All New Visits (2008 - 2017)

New Visit Subspecialist -0.003 -0.015 -0.007 -0.010
(0.009) (0.010) (0.011) (0.011)

R2 0.174 0.251 0.307 0.322
F-test (1st stage) 13,464 13,464 13,464 13,464
Observations 2,397,805 2,397,805 2,397,805 2,397,805
Mean Dep. Var. 0.143 0.229 0.335 0.404

Panel B: New Visits without Chemotherapy (2008 - 2017)

New Visit Subspecialist -0.008 -0.004 -0.013 -0.014
(0.012) (0.013) (0.014) (0.014)

R2 0.249 0.302 0.335 0.344
F-test (1st stage) 8,663 8,663 8,663 8,663
Observations 1,475,609 1,475,609 1,475,609 1,475,609
Mean Dep. Var. 0.185 0.250 0.326 0.383

Notes: The table presents two-stage least squares (2SLS) estimates of the effect of having a
first new office visit with a subspecialized oncologist on mortality outcomes between 2008
and 2017. Mortality is measured as a binary indicator of death within a given time frame
following the first new office visit, with time to death calculated from the date of that visit.
To ensure comparability across specifications, the sample is fixed based on the maximum
follow-up window. Panel A reports estimates for the full sample; Panel B restricts to indi-
viduals who did not initiate chemotherapy within 360 days of the office visit. All models
control for demographics, chronic conditions, and ZCTA-level characteristics, and include
fixed effects for ZCTA and cancer type by year. Standard errors are clustered at the ZCTA
level. Significance codes: *** p<0.01, ** p<0.05, * p<0.1.

To complete the analysis, we focus on the subset of individuals observed in both the
new office visit and chemotherapy samples and re-estimate our main mortality model
(Equation 2 from Section 4), measuring time to death from chemotherapy initiation. In
this subgroup, we recover mortality effects nearly identical to our main results, suggest-
ing that the observed survival benefit is driven by how chemotherapy is delivered, not by
differential selection into treatment. These findings remain robust when we flexibly con-
trol for the time between the initial consultation and treatment initiation. Taken together,
this evidence indicates that while subspecialists may initiate chemotherapy slightly ear-
lier, they do not select patients with different underlying mortality risk—highlighting the
importance of subspecialist-led chemotherapy delivery in improving outcomes.
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D Additional Figures and Tables
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Figure D1: Trends in Subspecialization in Cancer Care 2008 - 2020

Note: This figure presents trends in subspecialization for beneficiary chemotherapy episodes of different
cancer types. The figure depicts the share of chemotherapy episodes managed by highly subspecial-
ized oncologists of the relevant cancer type separately by cancer type. The “Overall” group (black line
with black dots) indicates the trend in subspecialization for all cancer types combined. Abbreviations:
GI=gastrointestinal.
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Figure D2: Socioeconomic Gradients in Access to Highly Subspecialized Cancer Care

Note: This figure illustrates the socioeconomic gradients in access to highly subspecialized cancer care,
using beneficiary ZCTA and median household income data from the American Community Survey. The
figure plots the share of chemotherapy episodes managed by highly subspecialized oncologists on the
y-axis, with the x-axis representing population groups (ventiles), ordered from lowest income to highest
income, for the years 2008 and 2020. Vertical grey lines indicate differences in access to highly subspecial-
ized cancer care across years for each population group. The horizontal dashed line represents the level of
access to highly subspecialized cancer care for the highest income population group in 2008. This figure
follows prior work on mortality differences across different areas in the U.S. (Currie and Schwandt, 2016;
Schwandt et al., 2021).
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Figure D3: Distribution of Differential Distances over Time

Note: This figure presents the distribution of differential distances for four different years (2008, 2012, 2016,
2020) for our entire main sample. It shows the distribution of differential distances in miles by different
bins. Panel B shows the histogram of arcsinh-transformed differential distances across different years.
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Figure D4: Distribution of Instrumental Variable

Note: This figure displays the distribution of the instrumental variable—the inverse hyperbolic sine (IHS)
of differential distance—for individuals in the main sample. All values are standardized to have a mean of
0 and a standard deviation of 1. Panel A shows kernel density plots of the raw IHS-transformed differential
distance for the years 2008, 2012, 2016, and 2020. Panel B shows the corresponding residualized values,
obtained by regressing the instrument on cancer type-by-year and ZCTA fixed effects.
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(c) 2-Year Mortality
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Figure D5: Falsification Test - Assignment of Distance to Unrelated Subspecialist

Note: This figure presents falsification tests in which beneficiaries are assigned distances to subspecialists
for unrelated cancer types (e.g., the distance to the nearest breast cancer subspecialist for a beneficiary
with thoracic cancer). Each dot is estimated from a separate regression. Each row on the y-axis represents
a specific reassignment of distances; for example, “Breast – GI” means all beneficiaries were assigned the
distance to the nearest breast cancer subspecialist, except those with breast cancer, who were assigned the
distance to the nearest GI subspecialist. The top row shows the main estimates using the true distance to the
nearest subspecialist of the relevant cancer type. Each panel corresponds to one of our four main mortality
outcomes. Solid purple circles indicate statistically significant estimates (p < 0.05), while hollow orange
circles indicate statistically insignificant results (p ≥ 0.05). The analysis sample includes all chemotherapy
episodes from 2008 to 2017. All models control for demographics, ZCTA-level characteristics, and chronic
conditions, and include ZCTA fixed effects and cancer type-by-year fixed effects. Standard errors are
clustered at the ZCTA level.
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Figure D6: Falsification Test - Randomly Reassign Differential Distances

Note: This figure presents 2SLS estimates of the effect of access to a subspecialized oncologist of the
relevant cancer type on 1-year mortality. Each dot represents the result from a separate regression using
our main specification, where differential distances were randomly reassigned to chemotherapy episodes
within year. This randomization was repeated 100 times. For reference, the figure also includes our main
(non-randomized) estimate. All models control for beneficiary demographics, ZCTA-level characteristics,
and chronic conditions, and include ZCTA fixed effects and cancer type-by-year fixed effects. Standard
errors are clustered at the ZCTA level.
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Figure D7: Instrument Balance across Beneficiary Characteristics

Note: This figure displays coefficients from separate regressions of the instrument on the beneficiary char-
acteristics listed on the y-axis. Each point represents a distinct regression. Solid purple dots show unad-
justed associations without controls or fixed effects. Hollow orange dots include our full set of ZIP Code
Tabulation Area (ZCTA) controls, ZCTA fixed effects, and cancer type-by-year fixed effects. Confidence
intervals are based on heteroskedasticity-robust standard errors in unadjusted regressions, and ZCTA-
clustered standard errors in the adjusted specifications.
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Figure D8: Oncologist Cancer Type Concentration and Subspecialization

Note: The figure displays information about the Herfindahl-Hirschman Indices (HHI of detailed cancer
type concentration (46 unique cancer types) for the years 2008, 2012, 2016 and 2020. In Panel A we plot
the distribution of oncologist’s HHI of cancer type concentration by year. In Panel B we plot the share of
subspecialist oncologists by decile of the respective HHI distribution.
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Table D1: Chemotherapy Drug HCPCS Codes

Generic Drug Name HCPCS Code

LUTETIUM LU 177 DOTATATE A9513
IBRITUMOMAB A9543
TOSITUMOMAB A9545
IOBENGUANE I 131 A9590
TRIPTORELIN C9016
OBINUTUZUMAB C9021
DAUNORUBICIN AND CYTARABINE C9024
RAMUCIRUMAB C9025
PEMBROLIZUMAB C9027
INOTUZUMAB OZOGAMICIN C9028
COPANLISIB C9030
LUTETIUM LU 177 DOTATATE C9031
BENDAMUSTINE C9042
CEMIPLIMAB-RWLC C9044
MOXETUMOMAB PASUDOTOX-TDFK C9045
TAGRAXOFUSP-ERZS C9049
ADO-TRASTUZUMAB EMTANSINE C9131
BRENTUXIMAB VEDOTIN C9287
ASPARAGINASE ERWINIA C9289
PERTUZUMAB C9292
CARFILZOMIB C9295
ZIV-AFLIBERCEPT C9296
OMACETAXINE C9297
IOBENGUANE I 131 C9408
BELINOSTAT C9442
BLINATUMOMAB C9449
NIVOLUMAB C9453
SILTUXIMAB C9455
RITUXIMAB AND HYALURONIDASE C9467
TALIMOGENE LAHERPAREPVEC C9472
IRINOTECAN, LIPOSOMAL C9474
NECITUMUMAB C9475
DARATUMUMAB C9476
ELOTUZUMAB C9477
TRABECTEDIN C9480
ATEZOLIZUMAB C9483
OLARATUMAB C9485
AVELUMAB C9491
DURVALUMAB C9492
ALEMTUZUMAB J0202
BUSULFAN J0594
DECITABINE J0894
HISTRELIN J1675
LANREOTIDE J1930
LEUPROLIDE J1950
OCTREOTIDE J2353
OCTREOTIDE J2354
SILTUXIMAB J2860
TRIPTORELIN J3315
TRIPTORELIN J3316
ANTI-THYMOCYTE GLOBULIN, EQUINE J7504
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(Table D1 continued)

ANTI-THYMOCYTE GLOBULIN, RABBIT J7511
BUSULFAN J8510
CAPECITABINE J8520
CAPECITABINE J8521
CYCLOPHOSPHAMIDE J8530
ETOPOSIDE J8560
FLUDARABINE J8562
GEFITINIB J8565
MELPHALAN J8600
TEMOZOLOMIDE J8700
TOPOTECAN J8705
ANTINEO, NOC J8999
DOXORUBICIN J9000
DOXORUBICIN, LIPOSOMAL J9001
DOXORUBICIN, LIPOSOMAL J9002
ALEMTUZUMAB J9010
ALDESLEUKIN J9015
ARSENIC TRIOXIDE J9017
ASPARAGINASE ERWINIA J9019
ASPARAGINASE J9020
ATEZOLIZUMAB J9022
AVELUMAB J9023
AZACITIDINE J9025
CLOFARABINE J9027
BCG (BACILLUS CALMETTE-GUERIN) J9030
BCG (BACILLUS CALMETTE-GUERIN) J9031
BELINOSTAT J9032
BENDAMUSTINE J9033
BENDAMUSTINE J9034
BEVACIZUMAB J9035
BENDAMUSTINE J9036
BLINATUMOMAB J9039
BLEOMYCIN J9040
BORTEZOMIB J9041
BRENTUXIMAB VEDOTIN J9042
CABAZITAXEL J9043
BORTEZOMIB J9044
CARBOPLATIN J9045
CARFILZOMIB J9047
CARMUSTINE J9050
CETUXIMAB J9055
COPANLISIB J9057
CISPLATIN J9060
CISPLATIN J9062
CLADRIBINE J9065
CYCLOPHOSPHAMIDE J9070
CYCLOPHOSPHAMIDE J9080
CYCLOPHOSPHAMIDE J9090
CYCLOPHOSPHAMIDE J9091
CYCLOPHOSPHAMIDE J9092
CYCLOPHOSPHAMIDE J9093
CYCLOPHOSPHAMIDE J9094
CYCLOPHOSPHAMIDE J9095
CYCLOPHOSPHAMIDE J9096
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(Table D1 continued)

CYCLOPHOSPHAMIDE J9097
CYTARABINE, LIPOSOMAL J9098
CYTARABINE J9100
CALASPARGASE PEGOL-MKNL J9118
CEMIPLIMAB-RWLC J9119
DACTINOMYCIN J9120
DACARBAZINE J9130
DACARBAZINE J9140
DARATUMUMAB J9145
DAUNORUBICIN J9150
DAUNORUBICIN, LIPOSOMAL J9151
DAUNORUBICIN AND CYTARABINE J9153
DEGARELIX J9155
DENILEUKIN DIFTITOX J9160
DOCETAXEL J9170
DOCETAXEL J9171
DURVALUMAB J9173
ELOTUZUMAB J9176
ENFORTUMAB VEDOTIN-EJFV J9177
EPIRUBICIN J9178
ERIBULIN J9179
ETOPOSIDE J9181
ETOPOSIDE J9182
FLUDARABINE J9185
FLUOROURACIL J9190
GEMCITABINE J9198
GEMCITABINE J9199
FLOXURIDINE J9200
GEMCITABINE J9201
GOSERELIN J9202
GEMTUZUMAB OZOGAMICIN J9203
IRINOTECAN, LIPOSOMAL J9205
IRINOTECAN J9206
IXABEPILONE J9207
IFOSFAMIDE J9208
IDARUBICIN J9211
INTERFERON, GAMMA 1-B J9216
LEUPROLIDE J9217
LEUPROLIDE J9218
LEUPROLIDE J9219
HISTRELIN J9225
IPILIMUMAB J9228
INOTUZUMAB OZOGAMICIN J9229
MECHLORETHAMINE J9230
MELPHALAN J9245
MELPHALAN J9246
NELARABINE J9261
OMACETAXINE J9262
OXALIPLATIN J9263
PACLITAXEL, PROTEIN-BOUND J9264
PACLITAXEL J9265
PEGASPARGASE J9266
PACLITAXEL J9267
PENTOSTATIN J9268
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(Table D1 continued)

TAGRAXOFUSP-ERZS J9269
PEMBROLIZUMAB J9271
MITOMYCIN J9280
OLARATUMAB J9285
MITOMYCIN J9290
MITOMYCIN J9291
MITOXANTRONE J9293
NECITUMUMAB J9295
NIVOLUMAB J9299
GEMTUZUMAB OZOGAMICIN J9300
OBINUTUZUMAB J9301
OFATUMUMAB J9302
PANITUMUMAB J9303
PEMETREXED J9305
PERTUZUMAB J9306
PRALATREXATE J9307
RAMUCIRUMAB J9308
POLATUZUMAB VEDOTIN-PIIQ J9309
RITUXIMAB J9310
RITUXIMAB AND HYALURONIDASE J9311
RITUXIMAB J9312
MOXETUMOMAB PASUDOTOX-TDFK J9313
ROMIDEPSIN J9315
STREPTOZOCIN J9320
TALIMOGENE LAHERPAREPVEC J9325
TEMOZOLOMIDE J9328
TEMSIROLIMUS J9330
THIOTEPA J9340
TOPOTECAN J9350
TOPOTECAN J9351
TRABECTEDIN J9352
ADO-TRASTUZUMAB EMTANSINE J9354
TRASTUZUMAB J9355
TRASTUZUMAB AND HYALURONIDASE-OYSK J9356
VALRUBICIN J9357
FAM-TRASTUZUMAB DERUXTECAN-NXKI J9358
VINBLASTINE J9360
VINCRISTINE J9370
VINCRISTINE, LIPOSOMAL J9371
VINCRISTINE J9375
VINCRISTINE J9380
VINORELBINE J9390
FULVESTRANT J9395
ZIV-AFLIBERCEPT J9400
Not otherwise classified, antineoplastic drugs J9999
TENIPOSIDE Q2017
TISAGENLECLEUCEL Q2040
AXICABTAGENE CILOLEUCEL Q2041
TISAGENLECLEUCEL Q2042
SIPULEUCEL-T Q2043
DOXORUBICIN, LIPOSOMAL Q2048
DOXORUBICIN, LIPOSOMAL Q2049
DOXORUBICIN, LIPOSOMAL Q2050
BEVACIZUMAB-AWWB Q5107
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(Table D1 continued)

TRASTUZUMAB-DTTB Q5112
TRASTUZUMAB-PKRB Q5113
TRASTUZUMAB-DKST Q5114
RITUXIMAB-ABBS Q5115
TRASTUZUMAB-QYYP Q5116
TRASTUZUMAB-ANNS Q5117
BEVACIZUMAB-BVZR Q5118
RITUXIMAB-PVVR Q5119
ALEMTUZUMAB Q9979
TEMOZOLOMIDE WW002
TEMOZOLOMIDE WW003
TEMOZOLOMIDE WW004
TEMOZOLOMIDE WW005
TEMOZOLOMIDE WW006
TEMOZOLOMIDE WW007
TEMOZOLOMIDE WW008
TEMOZOLOMIDE WW009
BUSULFAN WW020
ETOPOSIDE WW030
ETOPOSIDE WW031
ETOPOSIDE WW032
MELPHALAN WW080
MELPHALAN WW081
CAPECITABINE WW089
CAPECITABINE WW090
CAPECITABINE WW091
CAPECITABINE WW093
CAPECITABINE WW094
CAPECITABINE WW096
TOPOTECAN WW140

Notes: The table provides the generic drug names and HCPCS
codes for chemotherapy drugs used to construct chemotherapy
episodes following the Oncology Care Model.
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Table D2: ICD 9 and ICD 10 Codes for Cancer Type Classification

Cancer Type Label Cancer Types
Included

ICD-9/ICD-10 Codes

Breast 174.xx, 175.xx, 233.0x, C50.xx, D05.xx
GI Esophagus, stomach,

pancreas, liver, small
intestine, colon,
rectum

154.2x, 154.3x, 154.8x, 230.0x, 230.1x, 230.2x, 230.3x, 230.4x, 230.5x, 230.6x,
230.7x, 230.8x, 230.9x, 150.xx, 151.xx, 155.xx, 156.0x, 156.1x, 156.2x, 156.8x,
156.9x, 195.2x, 159.xx, 157.xx, 152.xx, 153.xx, 154.0x, 154.1x, C21.xx, D00.xx,
D01.xx, C15.xx, C16.xx, C22.xx, C23.xx, C24.xx, C76.2x, C25.xx, C17.xx, C18.xx,
C19.xx, C20.xx

Gynecologic Ovaries, uterus,
cervix, vulva, vagina

233.1x, 179.xx, 180.xx, 182.xx, 184.0x, 184.1x, 184.2x, 184.3x, 184.4x, 183.2x,
183.3x, 183.4x, 183.5x, 183.8x, 183.9x, 184.8x, 184.9x, 181.xx, 183.0x, D06.xx,
C51.xx, C52.xx, C53.xx, C54.xx, C55.xx, C57.xx, C58.xx, C56.xx

Head and Neck Lip, tongue, salivary
gland, gum, floor of
mouth,
oropharyngeal,
nasopharyngeal,
hypopharyngeal,
sinuses, laryngeal,
trachea, nasal cavity,
middle ear, eye,
adnexa, head, face,
neck, palate, parotid
gland

231.xx, 140.xx, 141.0x, 141.1x, 141.2x, 141.3x, 141.4x, 141.5x, 141.6x, 141.8x,
141.9x, 142.0x, 142.1x, 142.2x, 142.8x, 142.9x, 143.xx, 144.xx, 145.0x, 145.1x,
145.2x, 145.3x, 145.4x, 145.5x, 145.6x, 145.8x, 145.9x, 146.0x, 146.1x, 146.2x,
146.3x, 146.4x, 146.5x, 146.6x, 146.7x, 146.8x, 146.9x, 147.xx, 148.0x, 148.1x,
148.2x, 148.3x, 148.8x, 148.9x, 149.xx, 160.0x, 160.1x, 160.2x, 160.3x, 160.4x,
160.5x, 160.8x, 160.9x, 161.xx, 162.0x, 190.xx, 195.0x, D02.xx, C00.xx, C01.xx,
C02.xx, C03.xx, C04.xx, C05.xx, C06.xx, C07.xx, C08.xx, C09.xx, C10.xx, C11.xx,
C12.xx, C13.xx, C14.xx, C30.xx, C31.xx, C32.xx, C33.xx, C69.xx, C76.0x

Leukemia +
Lymphoma

Acute leukemia,
chronic leukemia,
lymphoma, multiple
myeloma

205, 205.01, 205.02, 204.0x, 205.3x, 206.0x, 207.0x, 207.2x, 208.0x, 205.2x, 204.1x,
205.1x, 208.1x, 206.1x, 238.71, 208.2x, 208.8x, 208.9x, 204.9x, 238.72, 238.73,
238.74, 238.75, 206.2x, 206.9x, 203.81, 203.0x, 203.1x, 289.83, 205.9x, 238.76,
289.89, 202.3x, 202.5x, 202.6x, 202.9x, 204.2x, 204.8x, 206.8x, 205.8x, 207.8x, 207.1,
207.11, 207.12, 238.4x, 202.8, 202.81, 202.82, 202.83, 202.84, 202.85, 202.86, 202.87,
202.88, 203.8, 203.82, 200.0x, 200.1x, 200.2x, 200.3x, 200.4x, 200.5x, 200.6x, 200.7x,
200.8x, 201.xx, 202.0x, 202.1x, 202.2x, 202.4x, 202.7x, 273.3x, C91.0x, C91.3x,
C91.5x, C91.6x, C91.ax, C92.0x, C92.3x, C92.4x, C92.5x, C92.6x, C92.ax, C93.0x,
C94.0x, C94.2x, C94.3x, C95.0x, C94.4x, C92.2x, C91.1x, C92.1x, C95.1x, C93.1x,
D47.1x, D47.3x

Prostate +
Genitourinary

Kidney, bladder,
ureter, prostate,
testis, penis

188.xx, 189.1x, 189.2x, 189.3x, 189.4x, 189.8x, 189.9x, 233.2x, 233.3x, 233.4x,
233.5x, 233.6x, 189.0x, 187.1x, 187.2x, 187.3x, 187.4x, 187.5x, 187.6x, 187.7x,
187.8x, 187.9x, 186.xx, 185.xx, C65.xx, C66.xx, C67.xx, C68.xx, D07.xx, C64.xx,
C60.xx, C63.xx, C62.xx, C61.xx

Skin Melanoma,
non-melanoma skin
cancers

232.xx, 172.xx, 209.31, 209.32, 209.33, 209.34, 209.35, 209.36, 173.xx, D04.xx,
C43.xx, D03.xx, C4A.xx, C44.xx

Thoracic Lung, pleura,
mediastinum,
thymus

162.2x, 162.3x, 162.4x, 162.5x, 162.8x, 162.9x, 165.xx, 163.xx, 164.1x, 164.2x,
164.3x, 164.8x, 164.9x, 195.1x, 164.0x, C34.xx, C39.xx, C45.xx, C38.xx, C76.1x,
C37.xx

Other All other cancers 170.4x, 170.5x, 170.7x, 170.8x, 170.0x, 170.1x, 170.2x, 170.3x, 170.6x, 170.9x, 209.3,
193.xx, 194.0x, 194.1x, 194.3x, 194.4x, 194.5x, 194.6x, 194.8x, 194.9x, 209.0x,
209.1x, 209.2x, 191.xx, 192.0x, 192.1x, 192.2x, 192.3x, 192.8x, 192.9x, 233.7x,
233.9x, 234.xx, 176.xx, 195.5x, 195.8x

Note: The table presents the classification of cancer types used in our main episode data. Column 1 pro-
vides the cancer type label, column 2 provides the included cancer types and column 3 the corresponding
ICD-9 and ICD-10 codes used for identification of cancers in the Medicare claims.
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Table D3: Diagnostic Related Group Codes for Placebo
Outcomes

Condition DRG Code Nr.
Acute Myocardial Infarction 280, 281, 282
Hip Fracture 480, 481, 482
Stroke 061, 062, 063, 064, 065, 066

Notes: The table provides the diagnostic related group codes used to
define placebo outcomes from Medicare Inpatient files.
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Table D4: Mortality Effects of Access to Subspecialized Oncologist - Varying
Sample

180-day 1-Year 2-Year 3-Year

Panel A: 2SLS

Any Office Visit Subs. -0.001 -0.015∗ -0.034∗∗∗ -0.033∗∗

(0.005) (0.008) (0.011) (0.013)

R2 0.114 0.214 0.290 0.318
F-test (1st stage) 17,177 17,177 15,478 13,911
Observations 5,598,571 5,598,571 5,016,515 4,456,173
Mean Dep. Var. 0.074 0.168 0.298 0.388

Panel B: OLS

Any Office Visit Subs. -0.004∗∗∗ 0.006∗∗∗ 0.013∗∗∗ 0.014∗∗∗

(0.000) (0.000) (0.001) (0.001)

R2 0.114 0.215 0.292 0.319
Observations 5,598,571 5,598,571 5,016,515 4,456,173
Mean Dep. Var. 0.074 0.168 0.298 0.388

Notes: The table provides estimates on the effect of access to subspecialized oncologists
on various outcomes of mortality for the years 2008 to 2019 of our main sample. Due
to the required look forward window when constructing measures of mortality the ex-
act sample varies for the different mortality outcomes. Panel A shows two-stage least
squares estimates and Panel B presents the corresponding OLS estimates. All models in-
clude demographic, ZCTA level and chronic conditions controls as well fixed effects for the
beneficiaries’ ZCTA and cancer type by year fixed effects. Standard errors are clustered at
the ZCTA level. Signif. Codes: ***: 0.01, **: 0.05, *: 0.1.
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Table D5: Mortality Effects of Access to Subspecialized Oncologist
- Including Volume Controls

180-day 360-day 720-day 1080-day

Panel A: 2SLS

Any Office Visit Subs. -0.000 -0.022∗∗ -0.040∗∗∗ -0.035∗∗

(0.008) (0.011) (0.015) (0.017)

R2 0.118 0.220 0.295 0.320
F-test (1st stage) 12,004 12,004 12,004 12,004
Observations 4,456,173 4,456,173 4,456,173 4,456,173
Mean Dep. Var. 0.077 0.175 0.303 0.388

Panel B: OLS

Any Office Visit Subs. -0.003∗∗∗ 0.012∗∗∗ 0.024∗∗∗ 0.026∗∗∗

(0.000) (0.001) (0.001) (0.001)

R2 0.118 0.220 0.295 0.320
Observations 4,456,173 4,456,173 4,456,173 4,456,173
Mean Dep. Var. 0.077 0.175 0.303 0.388

Notes: The table provides estimates on the effect of access to subspecialized
oncologists on various outcomes of mortality for the years 2008 to 2017 of our
main sample. Due to the required look forward window when constructing
measures of mortality we have fixed the sample to be constant for all mea-
sures of mortality. Panel A shows two-stage least squares estimates and Panel
B presents the corresponding OLS estimates. All models include demographic
controls, ZCTA-level characteristics, and indicators for chronic conditions, as
well as fixed effects for the beneficiary’s ZCTA and cancer type-by-year. In ad-
dition, we control for the volume of cancer episodes of the care coordinating
oncologist in each of the five cancer categories using five variables, each trans-
formed using the inverse hyperbolic sine function. Standard errors are clustered
at the ZCTA level. Signif. Codes: ***: 0.01, **: 0.05, *: 0.1.
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Table D6: Mortality Effects of Access to Subspecialized Oncologist
- Including Volume Controls

180-day 1-Year 2-Year 3-Year

Panel A: 2SLS

Any Office Visit Subs. -0.007 -0.038∗∗ -0.051∗∗∗ -0.045∗∗

(0.011) (0.015) (0.016) (0.016)

R2 0.134 0.238 0.313 0.335
F-test (1st stage) 5,422 5,422 5,422 5,422
Observations 1,682,382 1,682,382 1,682,382 1,682,382
Mean Dep. Var. 0.108 0.229 0.368 0.452

Panel B: OLS

Any Office Visit Subs. -0.014∗∗∗ -0.005∗∗∗ 0.003∗∗∗ 0.005∗∗∗

(0.001) (0.001) (0.001) (0.001)

R2 0.130 0.239 0.315 0.336
Observations 1,682,382 1,682,382 1,682,382 1,682,382
Mean Dep. Var. 0.103 0.229 0.368 0.452

Notes: The table provides estimates on the effect of access to subspecialized
oncologists on various outcomes of mortality for the years 2008 to 2017 for the
first chemotherapy episode of each beneficiary in our main sample. Due to
the required look forward window when constructing measures of mortality
we have fixed the sample to be constant for all measures of mortality. Panel A
shows two-stage least squares estimates and Panel B presents the corresponding
OLS estimates. All models include demographic controls, ZCTA-level charac-
teristics, and indicators for chronic conditions, as well as fixed effects for the
beneficiary’s ZCTA and cancer type-by-year. Standard errors are clustered at
the ZCTA level. Signif. Codes: ***: 0.01, **: 0.05, *: 0.1.

80



Table D7: Balancing Test of Instrumental Variable

Variable Mean SD Est. Unadj. Std. Err. Unadj. Est. Adj. Std. Err. Adj.

Panel A: Chronic Conditions Indicators

Alzheimer 0.025 0.156 -0.001 0.000 0.000 0.000
Alzheimer with Dementia 0.086 0.280 -0.001 0.000 0.000 0.000
AMI 0.011 0.104 0.001 0.000 0.000 0.000
Anemia 0.496 0.500 0.026 0.000 0.001 0.000
Asthma 0.062 0.241 -0.002 0.000 0.000 0.000
Atrial Fibrillation 0.119 0.324 0.005 0.000 0.000 0.000
Breast Cancer 0.473 0.499 -0.090 0.000 0.000 0.000
Colorectal Cancer 0.078 0.268 0.018 0.000 0.000 0.000
Endometrial Cancer 0.007 0.083 -0.001 0.000 0.000 0.000
Lung Cancer 0.127 0.333 0.035 0.000 0.000 0.000
Prostate Cancer 0.141 0.348 0.027 0.000 0.000 0.000
Cataract 0.231 0.421 -0.006 0.000 0.000 0.000
Congestive Heart Failure 0.195 0.396 0.008 0.000 -0.001 0.000
Chronic Kidney Disease 0.305 0.461 0.014 0.000 0.001 0.000
Chronic Obstructive Pulmonary Disease 0.182 0.386 0.025 0.000 -0.001 0.000
Depression 0.187 0.390 -0.002 0.000 0.000 0.000
Diabetes 0.308 0.462 0.003 0.000 0.000 0.000
Glaucoma 0.116 0.320 -0.008 0.000 0.000 0.000
Hip Fracture 0.011 0.104 0.000 0.000 0.000 0.000
Hyperlipidemia 0.554 0.497 -0.002 0.000 0.000 0.000
Hyperplasia 0.081 0.273 0.011 0.000 0.000 0.000
Hypertension 0.706 0.456 0.007 0.000 0.000 0.000
Hypothyroidism 0.199 0.399 -0.005 0.000 0.000 0.000
Ischemic Heart Disease 0.364 0.481 0.019 0.000 0.000 0.000
Osteoporosis 0.129 0.336 -0.014 0.000 0.000 0.000
Rheumatoid Arthritis 0.391 0.488 -0.009 0.000 0.000 0.000
Stroke 0.042 0.201 0.001 0.000 0.000 0.000

Panel B: Prior Healthcare Use and Diagnosis

Any Cervical Screening 0.068 0.252 -0.010 0.000 -0.001 0.000
Any Colorectal Screening 0.022 0.147 0.000 0.000 0.000 0.000
Any Lung Screening 0.002 0.050 0.000 0.000 0.000 0.000
Any Mammogram 0.193 0.394 -0.017 0.000 0.001 0.000
Any Prostate Screening 0.057 0.232 0.014 0.000 0.000 0.000
Any Primary Care Visit 0.853 0.354 -0.002 0.000 0.000 0.000
Any ER Visit 0.348 0.476 0.013 0.000 0.000 0.000
Any Hospital Visit 0.253 0.435 0.015 0.000 0.000 0.000
Any Lymph Node Involvement 0.087 0.282 0.001 0.000 0.000 0.000
Any Metastatic Cancer Diagnosis 0.208 0.406 0.017 0.000 0.000 0.000

Panel C: Other Measures

Any LIS 0.15 0.357 -0.006 0.000 0.000 0.000
Full Dual 0.080 0.271 -0.009 0.000 0.000 0.000
Disabled 0.000 0.002 0.000 0.000 0.000 0.000
Number of Chronic Conditions 4.859 2.932 0.098 0.001 0.001 0.002
Predicted Mortality 0.078 0.107 0.011 0.000 0.000 0.000

Notes: The table provides summary statistics for different beneficiary characteristics and healthcare indicators
prior to chemotherapy. Column 1 indicates the variable name, column 2 the mean within the overall sample,
column 3 the standard deviation, column 4 the estimate of an unadjusted regression of our instrument on the
variable in the respective row (without any controls and without fixed effects), column 5 the corresponding
heteroskedasticity robust standard error, column 6 shows estimates from a regression of our instrument on the
outcome in the respective row including cancer type by year, as well as ZCTA fixed effects and demographic
controls as well as ZCTA level controls, finally column 7 shows the corresponding standard error clustered at the
ZCTA level.
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Table D8: Access to Subspecialized Oncologist and Detailed Spending

Part A Part B

Inpatient HHA Hospice SNF Carrier Outpatient DME Part D

Panel A: 2SLS

Any Office Visit Subs. 470.35∗ 22.17 -291.15∗∗∗ 214.19∗∗∗ -5,313.87∗∗∗ 4,015.80∗∗∗ -43.68 -320.33
(249.96) (41.12) (78.53) (68.68) (771.31) (729.53) (41.67) (572.80)

R2 0.131 0.140 0.028 0.080 0.213 0.144 0.061 0.325
F-test (1st stage) 19,061 19,061 19,061 19,061 19,061 19,061 19,061 19,061
Observations 6,144,329 6,144,329 6,144,329 6,144,329 6,144,329 6,144,329 6,144,329 6,144,329
Mean Dep. Var. 3,994.25 578.84 375.30 584.70 11,815.07 9,475.52 329.88 8,204.55

Panel B: OLS

Any Office Visit Subs. 1,442.61∗∗∗ -11.85∗∗∗ -24.66∗∗∗ -116.43∗∗∗ -2,932.87∗∗∗ 5,558.99∗∗∗ 25.98∗∗∗ 774.09∗∗∗

(19.93) (2.49) (2.75) (3.76) (46.10) (55.48) (2.71) (42.86)

R2 0.132 0.140 0.029 0.081 0.215 0.145 0.062 0.326
Observations 6,144,329 6,144,329 6,144,329 6,144,329 6,144,329 6,144,329 6,144,329 6,144,329
Mean Dep. Var. 3,994.25 578.84 375.30 584.70 11,815.07 9,475.52 329.88 8,204.55

Notes: The table provides estimates on the effect of access to subspecialized oncologists on different measures of spending for chemother-
apy episodes in our main sample. Column 1 provides estimates for inpatient, column 2 for home health, column 3 for hospice, column
4 for skilled nursing facilities, column 5 for carrier file spending, column 6 for outpatient, column 7 for durable medical equipment and
column 9 for Part D spending. Panel A shows two-stage least squares estimates and Panel B presents the corresponding OLS estimates.
All models include demographic, ZCTA level and chronic conditions controls as well fixed effects for the beneficiaries’ ZCTA and cancer
type by year fixed effects. Standard errors are clustered at the ZCTA level. Signif. Codes: ***: 0.01, **: 0.05, *: 0.1.
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Table D9: Access to Subspecialized Oncologist RBCS Subcategory Spending

Chemotherapy (RH) Injections & Infusions (RI) Uncategorized

Panel A: 2SLS

Any Office Visit Subs. -2,498.50∗∗∗ -768.17∗∗∗ 1,852.46∗∗∗

(491.74) (171.45) (368.74)

R2 0.214 0.095 0.404
F-test (1st stage) 19,061 19,061 19,061
Observations 6,144,379 6,144,379 6,144,379
Mean Dep. Var. 8,501.45 2,314.60 5,093.14

Panel B: OLS

Any Office Visit Subs. -742.58∗∗∗ -231.71∗∗∗ 2,786.57∗∗∗

(29.83) (10.26) (28.10)

R2 0.215 0.136 0.406
Observations 6,144,379 6,144,379 6,144,379
Mean Dep. Var. 8,501.45 2,314.60 5,093.14

Notes: The table provides estimates on the effect of access to subspecialized oncologists on different measures of
spending for chemotherapy episodes in our main sample. The spending subcategories follow the Restructured
BETOS Classification System (RBCS) and we present select estimates here. Column 1 covers RBCS codes falling into
the subcategory "Treatment - Chemotherapy", column 2 covers spending in the category "Treatment - Injections and
Infusions (nononcologic)" and column 3 covers HCPCS codes that are not categorized in the BETOS classification
(e.g. mostly retired chemotherapy codes). Panel A shows two-stage least squares estimates and Panel B presents
the corresponding OLS estimates. All models include demographic, ZCTA level and chronic conditions controls as
well fixed effects for the beneficiaries’ ZCTA and cancer type by year fixed effects. Standard errors are clustered at
the ZCTA level. Signif. Codes: ***: 0.01, **: 0.05, *: 0.1.
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Table D10: Access to Subspecialized Oncologist and Effects on Spending by Cost
Quintile

Q1 Q2 Q3 Q4 Q5

Panel A: 2SLS

Any Office Visit Subs. -1.45 -1.88 -62.68∗∗ -354.67∗∗∗ -2,833.96∗∗∗

(1.13) (6.56) (25.66) (95.97) (522.22)

R2 0.045 0.088 0.218 0.133 0.210
F-test (1st stage) 19,061 19,061 19,061 19,061 19,061
Observations 6,144,379 6,144,379 6,144,379 6,144,379 6,144,379
Mean Dep. Var. 13.82 68.11 457.79 1,578.72 8,710.25

Panel B: OLS

Any Office Visit Subs. 0.56∗∗∗ 8.69∗∗∗ -9.31∗∗∗ -190.50∗∗∗ -798.46∗∗∗

(0.07) (0.41) (2.03) (6.10) (31.34)

R2 0.046 0.088 0.219 0.133 0.211
Observations 6,144,379 6,144,379 6,144,379 6,144,379 6,144,379
Mean Dep. Var. 13.82 68.11 457.79 1,578.72 8,710.25

Notes: The table reports estimates of the effect of access to subspecialized oncologists on Part
B chemotherapy drug spending within the RBCS sub-categories “Treatment – Chemotherapy”
and “Treatment – Injections and Infusions.” We first calculate the average Medicare spending
per HCPCS code across all episodes and assign each code to a spending quintile. We then
aggregate episode-level spending by summing across all HCPCS codes within each quintile and
estimate treatment effects separately for each spending tier. The table provides both 2SLS only.
Results for different measures of spending are presented across different panels. All models
include demographic, ZCTA level and chronic conditions controls as well fixed effects for the
beneficiaries’ ZCTA and cancer type by year fixed effects. Standard errors are clustered at the
ZCTA level. Signif. Codes: ***: 0.01, **: 0.05, *: 0.1.
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Table D11: Subspecialist Access and End of Life Care (30 Days before Death) - Dece-
dent Sample

Any ER Any ICU Any Hospice (30-3) Any Hospice (3-0)

Panel A: 2SLS

Any Office Visit Subs. 0.056 0.095∗∗ -0.040 0.024
(0.048) (0.044) (0.048) (0.038)

R2 0.116 0.161 0.087 0.070
F-test (1st stage) 929 929 929 929
Observations 440,475 440,475 440,475 440,475
Mean Dep. Var. 0.579 0.299 0.352 0.168

Panel B: OLS

Any Office Visit Subs. -0.021∗∗∗ -0.004∗ 0.021∗∗∗ 0.000

(0.002) (0.002) (0.002) (0.002)

R2 0.119 0.166 0.089 0.071
Observations 440,475 440,475 440,475 440,475
Mean Dep. Var. 0.579 0.299 0.352 0.168

Notes: The table provides estimates on the effect of access to subspecialized oncologists on different
measures of end of life care within the last 30 days of a beneficiaries life for a selected sample of
decedents. Decedents are included in this sample if they died during or within 30 days of chemother-
apy. Column 1 shows the effect on the probability of emergency room admission, column 2 on the
effect of intensive care unit admission, column 3 shows the effect on whether a beneficiary has had
a hospice claim within the last 30 to 3 days before death (30-3) and column 4 whether a beneficiary
had any claim within the last 3 days of life (3-0). Panel A shows two-stage least squares estimates and
Panel B presents the corresponding OLS estimates. All models include demographic, ZCTA level and
chronic conditions controls as well fixed effects for the beneficiaries’ ZCTA and cancer type by year
fixed effects. Standard errors are clustered at the ZCTA level. Signif. Codes: ***: 0.01, **: 0.05, *: 0.1.
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